树上有偏随机行走的最大势能

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Yueyun Hu, Zhan Shi
{"title":"树上有偏随机行走的最大势能","authors":"Yueyun Hu,&nbsp;Zhan Shi","doi":"10.1007/s10255-025-0047-0","DOIUrl":null,"url":null,"abstract":"<div><p>The biased random walk on supercritical Galton–Watson trees is known to exhibit a multiscale phenomenon in the slow regime: the maximal displacement of the walk in the first <i>n</i> steps is of order (log <i>n</i>)<sup>3</sup>, whereas the typical displacement of the walk at the <i>n</i>-th step is of order (log <i>n</i>)<sup>2</sup>. Our main result reveals another multiscale property of biased walks: the maximal potential energy of the biased walks is of order (log <i>n</i>)<sup>2</sup> in contrast with its typical size, which is of order log <i>n</i>. The proof relies on analyzing the intricate multiscale structure of the potential energy.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 3","pages":"601 - 636"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Maximal Potential Energy of Biased Random Walks on Trees\",\"authors\":\"Yueyun Hu,&nbsp;Zhan Shi\",\"doi\":\"10.1007/s10255-025-0047-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The biased random walk on supercritical Galton–Watson trees is known to exhibit a multiscale phenomenon in the slow regime: the maximal displacement of the walk in the first <i>n</i> steps is of order (log <i>n</i>)<sup>3</sup>, whereas the typical displacement of the walk at the <i>n</i>-th step is of order (log <i>n</i>)<sup>2</sup>. Our main result reveals another multiscale property of biased walks: the maximal potential energy of the biased walks is of order (log <i>n</i>)<sup>2</sup> in contrast with its typical size, which is of order log <i>n</i>. The proof relies on analyzing the intricate multiscale structure of the potential energy.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 3\",\"pages\":\"601 - 636\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0047-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0047-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

超临界高尔顿-沃森树上的偏置随机游走已知在慢状态下表现出多尺度现象:前n步的最大位移为(log n)3阶,而第n步的典型位移为(log n)2阶。我们的主要结果揭示了有偏行走的另一个多尺度性质:有偏行走的最大势能是(log n)2阶,而典型的大小是log n阶。证明依赖于分析复杂的多尺度势能结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Maximal Potential Energy of Biased Random Walks on Trees

The biased random walk on supercritical Galton–Watson trees is known to exhibit a multiscale phenomenon in the slow regime: the maximal displacement of the walk in the first n steps is of order (log n)3, whereas the typical displacement of the walk at the n-th step is of order (log n)2. Our main result reveals another multiscale property of biased walks: the maximal potential energy of the biased walks is of order (log n)2 in contrast with its typical size, which is of order log n. The proof relies on analyzing the intricate multiscale structure of the potential energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信