最大度至少为15的1-平面图的邻和区分总可选性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Lin Sun, De-rong Sun, Xin Li, Guang-long Yu
{"title":"最大度至少为15的1-平面图的邻和区分总可选性","authors":"Lin Sun,&nbsp;De-rong Sun,&nbsp;Xin Li,&nbsp;Guang-long Yu","doi":"10.1007/s10255-024-1148-x","DOIUrl":null,"url":null,"abstract":"<div><p>Given a simple graph <i>G</i> = (<i>V</i>, <i>E</i>) and its (proper) total coloring <i>ϕ</i> with elements of the set {1, 2, ⋯, <i>k</i>}, let <i>w</i><sub><i>ϕ</i></sub>(<i>v</i>) denote the sum of the color of <i>v</i> and the colors of all edges incident with <i>v</i>. If for each edge <i>uv</i> ∈ <i>E</i>, <i>w</i><sub><i>ϕ</i></sub>(<i>u</i>) ≠ <i>w</i><sub><i>ϕ</i></sub>(<i>v</i>), we call <i>ϕ</i> a neighbor sum distinguishing total coloring of <i>G</i>. Let <i>L</i> = {<i>L</i><sub><i>x</i></sub> ∣ <i>x</i> ∈ <i>V</i> ⋃ <i>E</i>} be a set of lists of real numbers, each of size <i>k</i>. The neighbor sum distinguishing total choosability of <i>G</i> is the smallest <i>k</i> for which for any specified collection of such lists, there exists a neighbor sum distinguishing total coloring using colors from <i>L</i><sub><i>x</i></sub> for each <i>x</i> ∈ <i>V</i> ⋃ <i>E</i>, and we denote it by <span>\\(\\text{ch}_{\\sum}^{\\prime\\prime}(G)\\)</span>. The known results of neighbor sum distinguishing total choosability are mainly about planar graphs. In this paper, we focus on 1-planar graphs. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. We prove that <span>\\(\\text{ch}_{\\sum}^{\\prime\\prime}(G)\\leq\\Delta+4\\)</span> for any 1-planar graph <i>G</i> with Δ ≥ 15, where Δ is the maximum degree of <i>G</i>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 3","pages":"898 - 914"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor Sum Distinguishing Total Choosability of 1-planar Graphs with Maximum Degree at Least 15\",\"authors\":\"Lin Sun,&nbsp;De-rong Sun,&nbsp;Xin Li,&nbsp;Guang-long Yu\",\"doi\":\"10.1007/s10255-024-1148-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a simple graph <i>G</i> = (<i>V</i>, <i>E</i>) and its (proper) total coloring <i>ϕ</i> with elements of the set {1, 2, ⋯, <i>k</i>}, let <i>w</i><sub><i>ϕ</i></sub>(<i>v</i>) denote the sum of the color of <i>v</i> and the colors of all edges incident with <i>v</i>. If for each edge <i>uv</i> ∈ <i>E</i>, <i>w</i><sub><i>ϕ</i></sub>(<i>u</i>) ≠ <i>w</i><sub><i>ϕ</i></sub>(<i>v</i>), we call <i>ϕ</i> a neighbor sum distinguishing total coloring of <i>G</i>. Let <i>L</i> = {<i>L</i><sub><i>x</i></sub> ∣ <i>x</i> ∈ <i>V</i> ⋃ <i>E</i>} be a set of lists of real numbers, each of size <i>k</i>. The neighbor sum distinguishing total choosability of <i>G</i> is the smallest <i>k</i> for which for any specified collection of such lists, there exists a neighbor sum distinguishing total coloring using colors from <i>L</i><sub><i>x</i></sub> for each <i>x</i> ∈ <i>V</i> ⋃ <i>E</i>, and we denote it by <span>\\\\(\\\\text{ch}_{\\\\sum}^{\\\\prime\\\\prime}(G)\\\\)</span>. The known results of neighbor sum distinguishing total choosability are mainly about planar graphs. In this paper, we focus on 1-planar graphs. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. We prove that <span>\\\\(\\\\text{ch}_{\\\\sum}^{\\\\prime\\\\prime}(G)\\\\leq\\\\Delta+4\\\\)</span> for any 1-planar graph <i>G</i> with Δ ≥ 15, where Δ is the maximum degree of <i>G</i>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 3\",\"pages\":\"898 - 914\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1148-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1148-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定一个简单图G = (V, E)及其(适当的)总着色φ具有集合{1,2,⋯,k的元素},设wϕ(V)表示V的颜色和与V相关的所有边的颜色的和。如果对于每个边uv∈E, wϕ(u)≠wϕ(V),我们称φ为区分G的总着色的邻居和。设L = {Lx∣x∈V∈E}是实数列表的集合,每个列表的大小为k。区分G的总可选择性的邻居和是最小的k,对于任何指定的列表集合,对于每个x∈V∈E,存在一个邻居和来区分来自Lx的颜色的总着色,我们用\(\text{ch}_{\sum}^{\prime\prime}(G)\)表示。已知的邻域和区分总可选性的结果主要是关于平面图的。本文主要讨论1-平面图。如果可以在平面上绘制图形,使得每条边最多与另一条边相交,则该图形是平面的。我们证明了\(\text{ch}_{\sum}^{\prime\prime}(G)\leq\Delta+4\)对于任意1-平面图G,且Δ≥15,其中Δ为G的最大度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbor Sum Distinguishing Total Choosability of 1-planar Graphs with Maximum Degree at Least 15

Given a simple graph G = (V, E) and its (proper) total coloring ϕ with elements of the set {1, 2, ⋯, k}, let wϕ(v) denote the sum of the color of v and the colors of all edges incident with v. If for each edge uvE, wϕ(u) ≠ wϕ(v), we call ϕ a neighbor sum distinguishing total coloring of G. Let L = {LxxVE} be a set of lists of real numbers, each of size k. The neighbor sum distinguishing total choosability of G is the smallest k for which for any specified collection of such lists, there exists a neighbor sum distinguishing total coloring using colors from Lx for each xVE, and we denote it by \(\text{ch}_{\sum}^{\prime\prime}(G)\). The known results of neighbor sum distinguishing total choosability are mainly about planar graphs. In this paper, we focus on 1-planar graphs. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. We prove that \(\text{ch}_{\sum}^{\prime\prime}(G)\leq\Delta+4\) for any 1-planar graph G with Δ ≥ 15, where Δ is the maximum degree of G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信