二部q多项式距离正则图的Terwilliger代数

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Li-hang Hou, Bo Hou, Suo-gang Gao
{"title":"二部q多项式距离正则图的Terwilliger代数","authors":"Li-hang Hou,&nbsp;Bo Hou,&nbsp;Suo-gang Gao","doi":"10.1007/s10255-025-0005-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let Γ denote a bipartite <i>Q</i>-polynomial distance-regular graph with vertex set <i>X</i>, valency <i>k</i> ≥ 3 and diameter <i>D</i> ≥ 3. Let <i>A</i> be the adjacency matrix of Γ and let <i>A</i>*:= <i>A</i>*(<i>x</i>) be the dual adjacency matrix of Γ with respect to a fixed vertex <i>x</i> ∈ <i>X</i>. Let <i>T</i>:= <i>T</i>(<i>x</i>) denote the Terwilliger algebra of Γ generated by <i>A</i> and <i>A</i>*. In this paper, we first describe the relations between <i>A</i> and <i>A</i>*. Then we determine the dimensions of both <i>T</i> and the center of <i>T</i>, and moreover we give a basis of <i>T</i>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 3","pages":"859 - 875"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Terwilliger Algebras of Bipartite Q-polynomial Distance-regular Graphs\",\"authors\":\"Li-hang Hou,&nbsp;Bo Hou,&nbsp;Suo-gang Gao\",\"doi\":\"10.1007/s10255-025-0005-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Γ denote a bipartite <i>Q</i>-polynomial distance-regular graph with vertex set <i>X</i>, valency <i>k</i> ≥ 3 and diameter <i>D</i> ≥ 3. Let <i>A</i> be the adjacency matrix of Γ and let <i>A</i>*:= <i>A</i>*(<i>x</i>) be the dual adjacency matrix of Γ with respect to a fixed vertex <i>x</i> ∈ <i>X</i>. Let <i>T</i>:= <i>T</i>(<i>x</i>) denote the Terwilliger algebra of Γ generated by <i>A</i> and <i>A</i>*. In this paper, we first describe the relations between <i>A</i> and <i>A</i>*. Then we determine the dimensions of both <i>T</i> and the center of <i>T</i>, and moreover we give a basis of <i>T</i>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 3\",\"pages\":\"859 - 875\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0005-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0005-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设Γ表示顶点集X,价k≥3,直径D≥3的二部q多项式距离正则图。设A为Γ的邻接矩阵,设A*:= A*(x)为Γ关于一个固定顶点x∈x的对偶邻接矩阵。设T:= T(x)表示由A和A*生成的Γ的Terwilliger代数。本文首先描述了A与A*之间的关系。然后我们确定了T和T中心的维数,并给出了T的一组基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Terwilliger Algebras of Bipartite Q-polynomial Distance-regular Graphs

Let Γ denote a bipartite Q-polynomial distance-regular graph with vertex set X, valency k ≥ 3 and diameter D ≥ 3. Let A be the adjacency matrix of Γ and let A*:= A*(x) be the dual adjacency matrix of Γ with respect to a fixed vertex xX. Let T:= T(x) denote the Terwilliger algebra of Γ generated by A and A*. In this paper, we first describe the relations between A and A*. Then we determine the dimensions of both T and the center of T, and moreover we give a basis of T.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信