{"title":"二部q多项式距离正则图的Terwilliger代数","authors":"Li-hang Hou, Bo Hou, Suo-gang Gao","doi":"10.1007/s10255-025-0005-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let Γ denote a bipartite <i>Q</i>-polynomial distance-regular graph with vertex set <i>X</i>, valency <i>k</i> ≥ 3 and diameter <i>D</i> ≥ 3. Let <i>A</i> be the adjacency matrix of Γ and let <i>A</i>*:= <i>A</i>*(<i>x</i>) be the dual adjacency matrix of Γ with respect to a fixed vertex <i>x</i> ∈ <i>X</i>. Let <i>T</i>:= <i>T</i>(<i>x</i>) denote the Terwilliger algebra of Γ generated by <i>A</i> and <i>A</i>*. In this paper, we first describe the relations between <i>A</i> and <i>A</i>*. Then we determine the dimensions of both <i>T</i> and the center of <i>T</i>, and moreover we give a basis of <i>T</i>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 3","pages":"859 - 875"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Terwilliger Algebras of Bipartite Q-polynomial Distance-regular Graphs\",\"authors\":\"Li-hang Hou, Bo Hou, Suo-gang Gao\",\"doi\":\"10.1007/s10255-025-0005-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Γ denote a bipartite <i>Q</i>-polynomial distance-regular graph with vertex set <i>X</i>, valency <i>k</i> ≥ 3 and diameter <i>D</i> ≥ 3. Let <i>A</i> be the adjacency matrix of Γ and let <i>A</i>*:= <i>A</i>*(<i>x</i>) be the dual adjacency matrix of Γ with respect to a fixed vertex <i>x</i> ∈ <i>X</i>. Let <i>T</i>:= <i>T</i>(<i>x</i>) denote the Terwilliger algebra of Γ generated by <i>A</i> and <i>A</i>*. In this paper, we first describe the relations between <i>A</i> and <i>A</i>*. Then we determine the dimensions of both <i>T</i> and the center of <i>T</i>, and moreover we give a basis of <i>T</i>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 3\",\"pages\":\"859 - 875\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0005-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0005-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Terwilliger Algebras of Bipartite Q-polynomial Distance-regular Graphs
Let Γ denote a bipartite Q-polynomial distance-regular graph with vertex set X, valency k ≥ 3 and diameter D ≥ 3. Let A be the adjacency matrix of Γ and let A*:= A*(x) be the dual adjacency matrix of Γ with respect to a fixed vertex x ∈ X. Let T:= T(x) denote the Terwilliger algebra of Γ generated by A and A*. In this paper, we first describe the relations between A and A*. Then we determine the dimensions of both T and the center of T, and moreover we give a basis of T.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.