数千种二维材料中氧相互作用障碍的半经验和可解释的机器学习

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Raphael M. Tromer
{"title":"数千种二维材料中氧相互作用障碍的半经验和可解释的机器学习","authors":"Raphael M. Tromer","doi":"10.1140/epjb/s10051-025-01001-5","DOIUrl":null,"url":null,"abstract":"<p>We present a combined semiempirical and machine learning approach to predict oxygen interaction barriers in 4036 two-dimensional (2D) materials from the C2DB database. Using the Extended Hückel Method (EHM), calibrated to reproduce the known oxygen barrier on graphene, we computed barrier energies along multiple adsorption paths. These values served as targets for supervised learning models based on descriptors from C2DB and Matminer. Among the tested models, XGBoost delivered the best performance, with SHAP analysis revealing that electronic features, such as electronegativity and valence electron count, are key predictors of barrier height, highlighting the underlying nonlinear relationships between material features and adsorption behavior. This framework enables efficient and interpretable screening of oxygen reactivity in 2D systems, supporting the design of oxidation-resistant and functional surfaces. These findings underscore the role of nonlinear science in materials discovery and highlight how combining semiempirical modeling with interpretable machine learning can efficiently capture complex surface interactions in 2D materials.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiempirical and interpretable machine learning of the oxygen interaction barriers in thousands of the two-dimensional materials\",\"authors\":\"Raphael M. Tromer\",\"doi\":\"10.1140/epjb/s10051-025-01001-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a combined semiempirical and machine learning approach to predict oxygen interaction barriers in 4036 two-dimensional (2D) materials from the C2DB database. Using the Extended Hückel Method (EHM), calibrated to reproduce the known oxygen barrier on graphene, we computed barrier energies along multiple adsorption paths. These values served as targets for supervised learning models based on descriptors from C2DB and Matminer. Among the tested models, XGBoost delivered the best performance, with SHAP analysis revealing that electronic features, such as electronegativity and valence electron count, are key predictors of barrier height, highlighting the underlying nonlinear relationships between material features and adsorption behavior. This framework enables efficient and interpretable screening of oxygen reactivity in 2D systems, supporting the design of oxidation-resistant and functional surfaces. These findings underscore the role of nonlinear science in materials discovery and highlight how combining semiempirical modeling with interpretable machine learning can efficiently capture complex surface interactions in 2D materials.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 7\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-01001-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01001-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种结合半经验和机器学习的方法来预测来自C2DB数据库的4036种二维(2D)材料中的氧相互作用障碍。使用扩展h ckel方法(EHM),校准以重现石墨烯上已知的氧势垒,我们计算了多个吸附路径上的势垒能。这些值作为基于C2DB和Matminer描述符的监督学习模型的目标。在测试的模型中,XGBoost表现最佳,SHAP分析显示电子特征,如电负性和价电子数,是势垒高度的关键预测因素,突出了材料特征与吸附行为之间潜在的非线性关系。该框架能够有效和可解释地筛选二维系统中的氧反应性,支持抗氧化和功能表面的设计。这些发现强调了非线性科学在材料发现中的作用,并强调了将半经验建模与可解释的机器学习相结合如何有效地捕获二维材料中复杂的表面相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiempirical and interpretable machine learning of the oxygen interaction barriers in thousands of the two-dimensional materials

We present a combined semiempirical and machine learning approach to predict oxygen interaction barriers in 4036 two-dimensional (2D) materials from the C2DB database. Using the Extended Hückel Method (EHM), calibrated to reproduce the known oxygen barrier on graphene, we computed barrier energies along multiple adsorption paths. These values served as targets for supervised learning models based on descriptors from C2DB and Matminer. Among the tested models, XGBoost delivered the best performance, with SHAP analysis revealing that electronic features, such as electronegativity and valence electron count, are key predictors of barrier height, highlighting the underlying nonlinear relationships between material features and adsorption behavior. This framework enables efficient and interpretable screening of oxygen reactivity in 2D systems, supporting the design of oxidation-resistant and functional surfaces. These findings underscore the role of nonlinear science in materials discovery and highlight how combining semiempirical modeling with interpretable machine learning can efficiently capture complex surface interactions in 2D materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信