使用优化深度学习模型的洪水易感性映射:一个非结构框架

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Seyed Vahid Razavi-Termeh, Abolghasem Sadeghi-Niaraki, Mohammadreza Jelokhani-Niaraki, Soo-Mi Choi
{"title":"使用优化深度学习模型的洪水易感性映射:一个非结构框架","authors":"Seyed Vahid Razavi-Termeh,&nbsp;Abolghasem Sadeghi-Niaraki,&nbsp;Mohammadreza Jelokhani-Niaraki,&nbsp;Soo-Mi Choi","doi":"10.1007/s13201-025-02548-5","DOIUrl":null,"url":null,"abstract":"<div><p>Floods are among the most destructive natural hazards, demanding accurate and efficient predictive tools for non-structural risk management. This study introduces a novel framework that integrates deep learning models—long short-term memory (LSTM) and recurrent neural network (RNN)—with two metaheuristic optimization algorithms, genetic algorithm (GA) and crow search algorithm (CSA), for flood susceptibility mapping (FSM). The innovation lies in hybridizing deep learning with metaheuristic optimization to enhance predictive accuracy. Using remote sensing and 12 key flood-conditioning factors, we produced high-resolution FSMs for Estahban, Iran. Five hundred and nine historical flood locations were used for model training and validation. The models were designed to predict continuous flood susceptibility values, enabling detailed spatial risk assessment using six developed models. Our findings reveal that optimized models significantly outperformed standalone models in predicting flood-prone areas. The RNN-GA model achieved the highest performance (area under the curve (AUC = 93.2%)), followed closely by LSTM-GA (AUC = 93.1%), RNN-CSA (AUC = 93%), and LSTM-CSA (AUC = 92.9%). Standalone models demonstrated comparatively lower accuracy, with RNN (AUC = 92.7%) and LSTM (AUC = 90%). This research contributes to developing a more effective and sustainable approach to flood management that complements existing structural measures. </p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 8","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02548-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Flood susceptibility mapping using optimized deep learning models: a non-structural framework\",\"authors\":\"Seyed Vahid Razavi-Termeh,&nbsp;Abolghasem Sadeghi-Niaraki,&nbsp;Mohammadreza Jelokhani-Niaraki,&nbsp;Soo-Mi Choi\",\"doi\":\"10.1007/s13201-025-02548-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Floods are among the most destructive natural hazards, demanding accurate and efficient predictive tools for non-structural risk management. This study introduces a novel framework that integrates deep learning models—long short-term memory (LSTM) and recurrent neural network (RNN)—with two metaheuristic optimization algorithms, genetic algorithm (GA) and crow search algorithm (CSA), for flood susceptibility mapping (FSM). The innovation lies in hybridizing deep learning with metaheuristic optimization to enhance predictive accuracy. Using remote sensing and 12 key flood-conditioning factors, we produced high-resolution FSMs for Estahban, Iran. Five hundred and nine historical flood locations were used for model training and validation. The models were designed to predict continuous flood susceptibility values, enabling detailed spatial risk assessment using six developed models. Our findings reveal that optimized models significantly outperformed standalone models in predicting flood-prone areas. The RNN-GA model achieved the highest performance (area under the curve (AUC = 93.2%)), followed closely by LSTM-GA (AUC = 93.1%), RNN-CSA (AUC = 93%), and LSTM-CSA (AUC = 92.9%). Standalone models demonstrated comparatively lower accuracy, with RNN (AUC = 92.7%) and LSTM (AUC = 90%). This research contributes to developing a more effective and sustainable approach to flood management that complements existing structural measures. </p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-025-02548-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-025-02548-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02548-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

洪水是最具破坏性的自然灾害之一,需要准确有效的预测工具来进行非结构性风险管理。本研究引入了一个新的框架,该框架将深度学习模型-长短期记忆(LSTM)和递归神经网络(RNN) -与遗传算法(GA)和乌鸦搜索算法(CSA)这两种元启发式优化算法集成在一起,用于洪水易感性映射(FSM)。创新之处在于将深度学习与元启发式优化相结合,以提高预测精度。利用遥感和12个关键的洪水调节因子,我们为伊朗的Estahban制作了高分辨率的FSMs。509个历史洪水地点被用于模型训练和验证。这些模型旨在预测连续的洪水易感性值,并使用六个已开发的模型进行详细的空间风险评估。我们的研究结果表明,优化模型在预测洪水易发地区方面明显优于独立模型。RNN-GA模型获得了最高的性能(曲线下面积(AUC = 93.2%)),其次是LSTM-GA (AUC = 93.1%)、RNN-CSA (AUC = 93%)和LSTM-CSA (AUC = 92.9%)。独立模型的准确率相对较低,RNN (AUC = 92.7%)和LSTM (AUC = 90%)。这项研究有助于开发一种更有效和可持续的洪水管理方法,以补充现有的结构措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flood susceptibility mapping using optimized deep learning models: a non-structural framework

Floods are among the most destructive natural hazards, demanding accurate and efficient predictive tools for non-structural risk management. This study introduces a novel framework that integrates deep learning models—long short-term memory (LSTM) and recurrent neural network (RNN)—with two metaheuristic optimization algorithms, genetic algorithm (GA) and crow search algorithm (CSA), for flood susceptibility mapping (FSM). The innovation lies in hybridizing deep learning with metaheuristic optimization to enhance predictive accuracy. Using remote sensing and 12 key flood-conditioning factors, we produced high-resolution FSMs for Estahban, Iran. Five hundred and nine historical flood locations were used for model training and validation. The models were designed to predict continuous flood susceptibility values, enabling detailed spatial risk assessment using six developed models. Our findings reveal that optimized models significantly outperformed standalone models in predicting flood-prone areas. The RNN-GA model achieved the highest performance (area under the curve (AUC = 93.2%)), followed closely by LSTM-GA (AUC = 93.1%), RNN-CSA (AUC = 93%), and LSTM-CSA (AUC = 92.9%). Standalone models demonstrated comparatively lower accuracy, with RNN (AUC = 92.7%) and LSTM (AUC = 90%). This research contributes to developing a more effective and sustainable approach to flood management that complements existing structural measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信