基于EBSD数据映射的TC17钛合金变形与断裂行为有限元模型研究

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuan Xiao, Yue Mao, Li Fu
{"title":"基于EBSD数据映射的TC17钛合金变形与断裂行为有限元模型研究","authors":"Xuan Xiao,&nbsp;Yue Mao,&nbsp;Li Fu","doi":"10.1007/s10853-025-11401-8","DOIUrl":null,"url":null,"abstract":"<div><p>TC17 titanium alloy is widely used in the aviation industry due to its high strength, high hardness, excellent fatigue resistance, and corrosion resistance. As a two-phase alloy, the plastic strain accommodation at <i>α</i>/<i>β</i> phase interfaces governs the material’s overall plastic deformability and fracture resistance, thereby becoming the decisive factor in microstructure optimization and service life prediction of aviation titanium alloy structural components. This paper proposes a fracture prediction method based on FEM that integrates experimentally characterized EBSD data with a modified fracture criterion to study the stress–strain evolution, deformation, and fracture behavior of TC17(<i>α</i> + <i>β</i>) and TC17(<i>β</i>) titanium alloys under tensile loading conditions. The model effectively reveals the influence of phase interfaces on mechanical properties and fracture behavior. The research results indicate that the simulated elastic modulus, yield strength, tensile strength, and elongation of TC17(<i>α</i> + <i>β</i>) titanium alloy are 92.34 GPa, 1030 MPa, 1119.7 MPa, and 3.2%, respectively, while those of TC17(<i>β</i>) are 91.58 GPa, 1031.8 MPa, 1175.5 MPa, and 3.15%, respectively. The deviation rates between simulated and experimentally measured (SEM in situ tensile test) mechanical properties are all within 3.5%, with the exception of elongation which exhibits a deviation below 8%. Stress and strain concentrations in TC17(<i>α</i> + <i>β</i>) titanium alloy primarily develop at interfaces between either equiaxed or lamellar <i>α</i> phase and the <i>β</i> matrix, whereas in TC17(<i>β</i>) alloy, they predominantly form at grain boundary <i>α</i> phase/<i>β</i> matrix interfaces (<i>α</i> phase at prior <i>β</i>-grain boundaries) or within <i>β</i> matrix regions adjacent to lamellar <i>α</i> phase termini. Crack initiation consistently occurs at <i>α</i>/<i>β</i> interfaces, specifically at equiaxed <i>α</i> phase interfaces in TC17(<i>α</i> + <i>β</i>) and grain boundary <i>α</i> phase interfaces in TC17(<i>β</i>), with subsequent propagation proceeding either along <i>α</i> phase interfaces or through <i>α</i> phase into the <i>β</i> matrix, where the basketweave structure demonstrates significantly greater crack propagation resistance compared to lamellar structures.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 38","pages":"17811 - 17828"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on deformation and fracture behavior of TC17 titanium alloy by finite element model based on mapping EBSD data\",\"authors\":\"Xuan Xiao,&nbsp;Yue Mao,&nbsp;Li Fu\",\"doi\":\"10.1007/s10853-025-11401-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>TC17 titanium alloy is widely used in the aviation industry due to its high strength, high hardness, excellent fatigue resistance, and corrosion resistance. As a two-phase alloy, the plastic strain accommodation at <i>α</i>/<i>β</i> phase interfaces governs the material’s overall plastic deformability and fracture resistance, thereby becoming the decisive factor in microstructure optimization and service life prediction of aviation titanium alloy structural components. This paper proposes a fracture prediction method based on FEM that integrates experimentally characterized EBSD data with a modified fracture criterion to study the stress–strain evolution, deformation, and fracture behavior of TC17(<i>α</i> + <i>β</i>) and TC17(<i>β</i>) titanium alloys under tensile loading conditions. The model effectively reveals the influence of phase interfaces on mechanical properties and fracture behavior. The research results indicate that the simulated elastic modulus, yield strength, tensile strength, and elongation of TC17(<i>α</i> + <i>β</i>) titanium alloy are 92.34 GPa, 1030 MPa, 1119.7 MPa, and 3.2%, respectively, while those of TC17(<i>β</i>) are 91.58 GPa, 1031.8 MPa, 1175.5 MPa, and 3.15%, respectively. The deviation rates between simulated and experimentally measured (SEM in situ tensile test) mechanical properties are all within 3.5%, with the exception of elongation which exhibits a deviation below 8%. Stress and strain concentrations in TC17(<i>α</i> + <i>β</i>) titanium alloy primarily develop at interfaces between either equiaxed or lamellar <i>α</i> phase and the <i>β</i> matrix, whereas in TC17(<i>β</i>) alloy, they predominantly form at grain boundary <i>α</i> phase/<i>β</i> matrix interfaces (<i>α</i> phase at prior <i>β</i>-grain boundaries) or within <i>β</i> matrix regions adjacent to lamellar <i>α</i> phase termini. Crack initiation consistently occurs at <i>α</i>/<i>β</i> interfaces, specifically at equiaxed <i>α</i> phase interfaces in TC17(<i>α</i> + <i>β</i>) and grain boundary <i>α</i> phase interfaces in TC17(<i>β</i>), with subsequent propagation proceeding either along <i>α</i> phase interfaces or through <i>α</i> phase into the <i>β</i> matrix, where the basketweave structure demonstrates significantly greater crack propagation resistance compared to lamellar structures.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 38\",\"pages\":\"17811 - 17828\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11401-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11401-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

TC17钛合金因其具有高强度、高硬度、优异的抗疲劳性和耐腐蚀性而广泛应用于航空工业。作为两相合金,α/β相界面处的塑性应变可容性决定着材料的整体塑性变形能力和抗断裂能力,成为航空钛合金结构件微观结构优化和使用寿命预测的决定性因素。针对TC17(α + β)和TC17(β)钛合金在拉伸载荷条件下的应力-应变演化、变形和断裂行为,提出了一种结合实验表征EBSD数据和改进断裂准则的有限元断裂预测方法。该模型有效地揭示了相界面对材料力学性能和断裂行为的影响。研究结果表明,TC17(α + β)钛合金的模拟弹性模量、屈服强度、抗拉强度和延伸率分别为92.34 GPa、1030 MPa、1119.7 MPa和3.2%,TC17(β)钛合金的模拟弹性模量、屈服强度、抗拉强度和延伸率分别为91.58 GPa、1031.8 MPa、1175.5 MPa和3.15%。除伸长率低于8%外,模拟力学性能与实验测量(SEM原位拉伸试验)力学性能之间的偏差率均在3.5%以内。TC17(α + β)钛合金的应力和应变集中主要发生在等轴或片层α相与β基体之间的界面,而在TC17(β)合金中,应力和应变集中主要发生在晶界α相/β基体界面(α相位于β-晶界)或靠近片层α相末端的β基体区域。裂纹萌生主要发生在α/β界面,特别是TC17的等轴α相界面(α + β)和TC17的晶界α相界面(β),随后的扩展要么沿着α相界面进行,要么通过α相进入β基体,其中篮织结构比片层结构表现出更强的裂纹扩展能力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on deformation and fracture behavior of TC17 titanium alloy by finite element model based on mapping EBSD data

Study on deformation and fracture behavior of TC17 titanium alloy by finite element model based on mapping EBSD data

TC17 titanium alloy is widely used in the aviation industry due to its high strength, high hardness, excellent fatigue resistance, and corrosion resistance. As a two-phase alloy, the plastic strain accommodation at α/β phase interfaces governs the material’s overall plastic deformability and fracture resistance, thereby becoming the decisive factor in microstructure optimization and service life prediction of aviation titanium alloy structural components. This paper proposes a fracture prediction method based on FEM that integrates experimentally characterized EBSD data with a modified fracture criterion to study the stress–strain evolution, deformation, and fracture behavior of TC17(α + β) and TC17(β) titanium alloys under tensile loading conditions. The model effectively reveals the influence of phase interfaces on mechanical properties and fracture behavior. The research results indicate that the simulated elastic modulus, yield strength, tensile strength, and elongation of TC17(α + β) titanium alloy are 92.34 GPa, 1030 MPa, 1119.7 MPa, and 3.2%, respectively, while those of TC17(β) are 91.58 GPa, 1031.8 MPa, 1175.5 MPa, and 3.15%, respectively. The deviation rates between simulated and experimentally measured (SEM in situ tensile test) mechanical properties are all within 3.5%, with the exception of elongation which exhibits a deviation below 8%. Stress and strain concentrations in TC17(α + β) titanium alloy primarily develop at interfaces between either equiaxed or lamellar α phase and the β matrix, whereas in TC17(β) alloy, they predominantly form at grain boundary α phase/β matrix interfaces (α phase at prior β-grain boundaries) or within β matrix regions adjacent to lamellar α phase termini. Crack initiation consistently occurs at α/β interfaces, specifically at equiaxed α phase interfaces in TC17(α + β) and grain boundary α phase interfaces in TC17(β), with subsequent propagation proceeding either along α phase interfaces or through α phase into the β matrix, where the basketweave structure demonstrates significantly greater crack propagation resistance compared to lamellar structures.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信