再生工程人工智能:未来组织再生的新范式

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Cato T. Laurencin, Taraje Whitfield, Chrysoula Argyrou, Fatemeh S. Hosseini
{"title":"再生工程人工智能:未来组织再生的新范式","authors":"Cato T. Laurencin,&nbsp;Taraje Whitfield,&nbsp;Chrysoula Argyrou,&nbsp;Fatemeh S. Hosseini","doi":"10.1007/s11705-025-2566-x","DOIUrl":null,"url":null,"abstract":"<div><p>For over a decade, regenerative engineering has been defined as the convergence of advanced materials sciences, stem cell sciences, physics, developmental biology, and clinical translation for the regeneration of complex tissues. Recently, the field has made major strides because of new efforts made possible by the utilization of another growing field: artificial intelligence. However, there is currently no term to describe the use of artificial intelligence for regenerative engineering. Therefore, we hereby present a new term, “Regenerative Engineering AI”, which cohesively describes the interweaving of artificial intelligence into the framework of regenerative engineering rather than using it merely as a tool. As the first to define the term, regenerative engineering AI is the interdisciplinary integration of artificial intelligence and machine learning within the fundamental core of regenerative engineering to advance its principles and goals. It represents the subsequent synergetic relationship between the two that allow for multiplex solutions toward human limb regeneration in a manner different from individual fields and artificial intelligence alone. Establishing such a term creates a unique and unified space to consolidate the work of growing fields into one coherent discipline under a common goal and language, fostering interdisciplinary collaboration and promoting focused research and innovation.</p></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 10","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regenerative engineering AI: a new paradigm for the future of tissue regeneration\",\"authors\":\"Cato T. Laurencin,&nbsp;Taraje Whitfield,&nbsp;Chrysoula Argyrou,&nbsp;Fatemeh S. Hosseini\",\"doi\":\"10.1007/s11705-025-2566-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For over a decade, regenerative engineering has been defined as the convergence of advanced materials sciences, stem cell sciences, physics, developmental biology, and clinical translation for the regeneration of complex tissues. Recently, the field has made major strides because of new efforts made possible by the utilization of another growing field: artificial intelligence. However, there is currently no term to describe the use of artificial intelligence for regenerative engineering. Therefore, we hereby present a new term, “Regenerative Engineering AI”, which cohesively describes the interweaving of artificial intelligence into the framework of regenerative engineering rather than using it merely as a tool. As the first to define the term, regenerative engineering AI is the interdisciplinary integration of artificial intelligence and machine learning within the fundamental core of regenerative engineering to advance its principles and goals. It represents the subsequent synergetic relationship between the two that allow for multiplex solutions toward human limb regeneration in a manner different from individual fields and artificial intelligence alone. Establishing such a term creates a unique and unified space to consolidate the work of growing fields into one coherent discipline under a common goal and language, fostering interdisciplinary collaboration and promoting focused research and innovation.</p></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 10\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2566-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2566-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

十多年来,再生工程被定义为先进材料科学、干细胞科学、物理学、发育生物学和复杂组织再生临床翻译的融合。最近,该领域取得了重大进展,因为利用另一个正在发展的领域——人工智能——使新的努力成为可能。然而,目前还没有一个术语来描述人工智能在再生工程中的应用。因此,我们在此提出一个新的术语,“再生工程AI”,它将人工智能整合到再生工程的框架中,而不仅仅是作为一种工具。作为第一个定义该术语的人,再生工程人工智能是再生工程基本核心内人工智能和机器学习的跨学科整合,以推进其原则和目标。它代表了两者之间的后续协同关系,以不同于单个领域和人工智能的方式,为人类肢体再生提供了多种解决方案。建立这样一个术语创造了一个独特而统一的空间,将不断发展的领域的工作整合成一个连贯的学科,在共同的目标和语言下,促进跨学科合作,促进重点研究和创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regenerative engineering AI: a new paradigm for the future of tissue regeneration

For over a decade, regenerative engineering has been defined as the convergence of advanced materials sciences, stem cell sciences, physics, developmental biology, and clinical translation for the regeneration of complex tissues. Recently, the field has made major strides because of new efforts made possible by the utilization of another growing field: artificial intelligence. However, there is currently no term to describe the use of artificial intelligence for regenerative engineering. Therefore, we hereby present a new term, “Regenerative Engineering AI”, which cohesively describes the interweaving of artificial intelligence into the framework of regenerative engineering rather than using it merely as a tool. As the first to define the term, regenerative engineering AI is the interdisciplinary integration of artificial intelligence and machine learning within the fundamental core of regenerative engineering to advance its principles and goals. It represents the subsequent synergetic relationship between the two that allow for multiplex solutions toward human limb regeneration in a manner different from individual fields and artificial intelligence alone. Establishing such a term creates a unique and unified space to consolidate the work of growing fields into one coherent discipline under a common goal and language, fostering interdisciplinary collaboration and promoting focused research and innovation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信