用于高性能和可扩展超级电容器的机器学习优化的混合石墨烯/聚合物电极

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maziyar Sabet
{"title":"用于高性能和可扩展超级电容器的机器学习优化的混合石墨烯/聚合物电极","authors":"Maziyar Sabet","doi":"10.1007/s10853-025-11468-3","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for carbon-based materials with superior electrochemical properties continues to grow, particularly for scalable supercapacitor applications. In this study, we present a hybrid synthesis route for graphene electrodes that combines chemical vapor deposition (CVD) and microwave-assisted reduction, guided by machine learning (ML) optimization. A predictive neural network trained on over 100 synthesis experiments enabled precise tuning of key parameters, resulting in high conductivity (~ 9.6 × 105 S m<sup>−1</sup>). Raman analysis across ≥ 5 spots per sample showed hybrid graphene at ID/IG = 0.29 [mean ± SD to be reported], while the CVD control exhibited ID/IG ≈ 0.10 [mean ± SD]. These properties underpinned the electrodes’ high specific capacitance (up to 500 F g<sup>−1</sup>), energy density (120 Wh kg<sup>−1</sup>), and 95% retention over 10,000 cycles. The synthesized graphene was further hybridized with MnO<sub>2</sub>, RuO<sub>2</sub>, and conductive polymers (polyaniline, polypyrrole), leading to enhanced specific capacitance, energy density, and power density (70 kW kg<sup>−1</sup>), while maintaining long-term stability. Structural, thermal, and electrochemical evaluations confirmed the durability and high performance of the optimized electrodes. This work demonstrates a scalable and cost-effective graphene synthesis strategy for advanced energy storage, enabled by machine learning. The integration of data-driven optimization with roll-to-roll-compatible processing provides a promising pathway toward industrial deployment of graphene-based supercapacitors in transportation, grid systems, and flexible electronics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 38","pages":"17738 - 17756"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-optimized hybrid graphene/polymer electrodes for high-performance and scalable supercapacitors\",\"authors\":\"Maziyar Sabet\",\"doi\":\"10.1007/s10853-025-11468-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The demand for carbon-based materials with superior electrochemical properties continues to grow, particularly for scalable supercapacitor applications. In this study, we present a hybrid synthesis route for graphene electrodes that combines chemical vapor deposition (CVD) and microwave-assisted reduction, guided by machine learning (ML) optimization. A predictive neural network trained on over 100 synthesis experiments enabled precise tuning of key parameters, resulting in high conductivity (~ 9.6 × 105 S m<sup>−1</sup>). Raman analysis across ≥ 5 spots per sample showed hybrid graphene at ID/IG = 0.29 [mean ± SD to be reported], while the CVD control exhibited ID/IG ≈ 0.10 [mean ± SD]. These properties underpinned the electrodes’ high specific capacitance (up to 500 F g<sup>−1</sup>), energy density (120 Wh kg<sup>−1</sup>), and 95% retention over 10,000 cycles. The synthesized graphene was further hybridized with MnO<sub>2</sub>, RuO<sub>2</sub>, and conductive polymers (polyaniline, polypyrrole), leading to enhanced specific capacitance, energy density, and power density (70 kW kg<sup>−1</sup>), while maintaining long-term stability. Structural, thermal, and electrochemical evaluations confirmed the durability and high performance of the optimized electrodes. This work demonstrates a scalable and cost-effective graphene synthesis strategy for advanced energy storage, enabled by machine learning. The integration of data-driven optimization with roll-to-roll-compatible processing provides a promising pathway toward industrial deployment of graphene-based supercapacitors in transportation, grid systems, and flexible electronics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 38\",\"pages\":\"17738 - 17756\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11468-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11468-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对具有优异电化学性能的碳基材料的需求持续增长,特别是在可扩展的超级电容器应用中。在这项研究中,我们提出了一种结合化学气相沉积(CVD)和微波辅助还原的石墨烯电极混合合成路线,并以机器学习(ML)优化为指导。经过100多个合成实验训练的预测神经网络能够精确调整关键参数,从而获得高电导率(~ 9.6 × 105 S m−1)。每个样品≥5个点的拉曼分析显示,混合石墨烯的ID/IG = 0.29[平均值±SD待报道],而CVD对照组的ID/IG≈0.10[平均值±SD]。这些特性支撑了电极的高比电容(高达500 F g−1)、能量密度(120 Wh kg−1)和超过10,000次循环95%的保留率。合成的石墨烯进一步与MnO2、RuO2和导电聚合物(聚苯胺、聚吡咯)杂化,提高了比电容、能量密度和功率密度(70 kW kg−1),同时保持了长期稳定性。结构、热学和电化学评价证实了优化电极的耐用性和高性能。这项工作展示了一种可扩展且具有成本效益的石墨烯合成策略,用于通过机器学习实现先进的能量存储。数据驱动优化与卷对卷兼容处理的集成为石墨烯超级电容器在交通运输、电网系统和柔性电子领域的工业部署提供了一条有希望的途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-optimized hybrid graphene/polymer electrodes for high-performance and scalable supercapacitors

The demand for carbon-based materials with superior electrochemical properties continues to grow, particularly for scalable supercapacitor applications. In this study, we present a hybrid synthesis route for graphene electrodes that combines chemical vapor deposition (CVD) and microwave-assisted reduction, guided by machine learning (ML) optimization. A predictive neural network trained on over 100 synthesis experiments enabled precise tuning of key parameters, resulting in high conductivity (~ 9.6 × 105 S m−1). Raman analysis across ≥ 5 spots per sample showed hybrid graphene at ID/IG = 0.29 [mean ± SD to be reported], while the CVD control exhibited ID/IG ≈ 0.10 [mean ± SD]. These properties underpinned the electrodes’ high specific capacitance (up to 500 F g−1), energy density (120 Wh kg−1), and 95% retention over 10,000 cycles. The synthesized graphene was further hybridized with MnO2, RuO2, and conductive polymers (polyaniline, polypyrrole), leading to enhanced specific capacitance, energy density, and power density (70 kW kg−1), while maintaining long-term stability. Structural, thermal, and electrochemical evaluations confirmed the durability and high performance of the optimized electrodes. This work demonstrates a scalable and cost-effective graphene synthesis strategy for advanced energy storage, enabled by machine learning. The integration of data-driven optimization with roll-to-roll-compatible processing provides a promising pathway toward industrial deployment of graphene-based supercapacitors in transportation, grid systems, and flexible electronics.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信