具有花状纳米结构的双功能NiO@CoZnLDH复合材料:能量储存和水电解性能的协同增强

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ming-Xia Wang, Xingming Zhao, Dong-Mei Ma, Yi Jia, Hong-Sheng Chu, Xiao-Ming Lu, Jun Xiang, Rongda Zhao, Fu-Fa Wu
{"title":"具有花状纳米结构的双功能NiO@CoZnLDH复合材料:能量储存和水电解性能的协同增强","authors":"Ming-Xia Wang,&nbsp;Xingming Zhao,&nbsp;Dong-Mei Ma,&nbsp;Yi Jia,&nbsp;Hong-Sheng Chu,&nbsp;Xiao-Ming Lu,&nbsp;Jun Xiang,&nbsp;Rongda Zhao,&nbsp;Fu-Fa Wu","doi":"10.1007/s10853-025-11455-8","DOIUrl":null,"url":null,"abstract":"<div><p>The development of high-performance energy materials is essential for addressing global energy challenges. In this study, a NiO@CoZnLDH composite electrode was synthesized via a two-step hydrothermal process, and its electrochemical performance was evaluated for applications in both supercapacitors and water electrolysis. The asymmetric supercapacitor (NiO@CoZnLDH//AC) achieved an energy density of 9.44 Wh/kg at a power density of 1132 W/kg, maintaining 73.6% of its capacitance after 8000 charge–discharge cycles. For electrocatalysis, the composite exhibits low overpotential for hydrogen evolution reaction and oxygen evolution reaction (188.8 and 322.2 mV at 10 mA/ cm<sup>2</sup>) and enables stable overall water splitting at 1.84 V for 12 h in 1 M KOH. These results confirm that NiO@CoZnLDH is a promising bifunctional material for energy storage and conversion applications.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 38","pages":"17723 - 17737"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional NiO@CoZnLDH composites with flower-like nanoarchitecture: synergistic enhancement of energy storage and water electrolysis performance\",\"authors\":\"Ming-Xia Wang,&nbsp;Xingming Zhao,&nbsp;Dong-Mei Ma,&nbsp;Yi Jia,&nbsp;Hong-Sheng Chu,&nbsp;Xiao-Ming Lu,&nbsp;Jun Xiang,&nbsp;Rongda Zhao,&nbsp;Fu-Fa Wu\",\"doi\":\"10.1007/s10853-025-11455-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of high-performance energy materials is essential for addressing global energy challenges. In this study, a NiO@CoZnLDH composite electrode was synthesized via a two-step hydrothermal process, and its electrochemical performance was evaluated for applications in both supercapacitors and water electrolysis. The asymmetric supercapacitor (NiO@CoZnLDH//AC) achieved an energy density of 9.44 Wh/kg at a power density of 1132 W/kg, maintaining 73.6% of its capacitance after 8000 charge–discharge cycles. For electrocatalysis, the composite exhibits low overpotential for hydrogen evolution reaction and oxygen evolution reaction (188.8 and 322.2 mV at 10 mA/ cm<sup>2</sup>) and enables stable overall water splitting at 1.84 V for 12 h in 1 M KOH. These results confirm that NiO@CoZnLDH is a promising bifunctional material for energy storage and conversion applications.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 38\",\"pages\":\"17723 - 17737\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11455-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11455-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高性能能源材料的发展对于解决全球能源挑战至关重要。本研究通过两步水热法合成了NiO@CoZnLDH复合电极,并对其在超级电容器和水电解中的应用进行了电化学性能评价。该非对称超级电容器(NiO@CoZnLDH//AC)在1132 W/kg的功率密度下获得了9.44 Wh/kg的能量密度,在8000次充放电循环后保持了73.6%的电容。在电催化方面,该复合材料表现出较低的析氢反应和析氧反应过电位(10 mA/ cm2时为188.8 mV和322.2 mV),在1 M KOH条件下,在1.84 V电压下稳定地进行12小时的整体水分解。这些结果证实NiO@CoZnLDH是一种很有前途的能量存储和转换双功能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifunctional NiO@CoZnLDH composites with flower-like nanoarchitecture: synergistic enhancement of energy storage and water electrolysis performance

The development of high-performance energy materials is essential for addressing global energy challenges. In this study, a NiO@CoZnLDH composite electrode was synthesized via a two-step hydrothermal process, and its electrochemical performance was evaluated for applications in both supercapacitors and water electrolysis. The asymmetric supercapacitor (NiO@CoZnLDH//AC) achieved an energy density of 9.44 Wh/kg at a power density of 1132 W/kg, maintaining 73.6% of its capacitance after 8000 charge–discharge cycles. For electrocatalysis, the composite exhibits low overpotential for hydrogen evolution reaction and oxygen evolution reaction (188.8 and 322.2 mV at 10 mA/ cm2) and enables stable overall water splitting at 1.84 V for 12 h in 1 M KOH. These results confirm that NiO@CoZnLDH is a promising bifunctional material for energy storage and conversion applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信