钢电极上导电PEDOT镀层的电沉积及防腐性能

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Reham M. Ali, Abou-Elhagag A. Hermas, Abobakr M. Elnady, Tharwat H. Mansoure
{"title":"钢电极上导电PEDOT镀层的电沉积及防腐性能","authors":"Reham M. Ali,&nbsp;Abou-Elhagag A. Hermas,&nbsp;Abobakr M. Elnady,&nbsp;Tharwat H. Mansoure","doi":"10.1007/s10008-025-06238-9","DOIUrl":null,"url":null,"abstract":"<div><p>Conducting polymers (CPs), such as poly(3,4-ethylenedioxythiophene) (PEDOT), are widely recognized for their exceptional electrical conductivity, chemical stability, and environmental durability, making them promising candidates for protective coatings on metal surfaces. In this study, PEDOT coatings were electrochemically deposited on mild steel and platinum electrodes using cyclic voltammetry (CV) in a non-aqueous acetonitrile medium containing tetrabutylammonium hexafluorophosphate. The deposition conditions—including scan rate, initial and final potentials, monomer concentration, and temperature—were optimized to achieve a homogeneous, compact, and adhesive polymer layer. The optimal conditions involved an EDOT monomer concentration of 0.01 M, a scan rate of 100 mV/s, and a potential range from − 0.5 to 1.8 V (SCE) at 30 °C. The electropolymerization process was found to be more efficient on steel (activation energy, <i>E</i><sub><i>a</i></sub> = 10.894 kJ/mol) than on platinum (<i>E</i><sub><i>a</i></sub> = 49.426 kJ/mol), resulting in a denser PEDOT film with lower activation energy. Fourier transform infrared spectroscopy (FTIR) confirmed successful polymerization, while scanning electron microscopy (SEM) revealed distinct morphological differences between PEDOT coatings on steel and platinum surfaces. Corrosion studies in HCl and H₂SO₄ solutions demonstrated that PEDOT-coated steel exhibited substantially enhanced corrosion resistance compared to uncoated steel, achieving a protective efficiency of up to 66% after 24 h of immersion. Electrochemical impedance spectroscopy (EIS) further highlighted the superior barrier properties of PEDOT, emphasizing its ability to prevent corrosion by forming an effective barrier layer and promoting the formation of a passive film beneath the coating.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 9","pages":"3829 - 3842"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodeposition and corrosion protection properties of conducting PEDOT coatings on steel electrode\",\"authors\":\"Reham M. Ali,&nbsp;Abou-Elhagag A. Hermas,&nbsp;Abobakr M. Elnady,&nbsp;Tharwat H. Mansoure\",\"doi\":\"10.1007/s10008-025-06238-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conducting polymers (CPs), such as poly(3,4-ethylenedioxythiophene) (PEDOT), are widely recognized for their exceptional electrical conductivity, chemical stability, and environmental durability, making them promising candidates for protective coatings on metal surfaces. In this study, PEDOT coatings were electrochemically deposited on mild steel and platinum electrodes using cyclic voltammetry (CV) in a non-aqueous acetonitrile medium containing tetrabutylammonium hexafluorophosphate. The deposition conditions—including scan rate, initial and final potentials, monomer concentration, and temperature—were optimized to achieve a homogeneous, compact, and adhesive polymer layer. The optimal conditions involved an EDOT monomer concentration of 0.01 M, a scan rate of 100 mV/s, and a potential range from − 0.5 to 1.8 V (SCE) at 30 °C. The electropolymerization process was found to be more efficient on steel (activation energy, <i>E</i><sub><i>a</i></sub> = 10.894 kJ/mol) than on platinum (<i>E</i><sub><i>a</i></sub> = 49.426 kJ/mol), resulting in a denser PEDOT film with lower activation energy. Fourier transform infrared spectroscopy (FTIR) confirmed successful polymerization, while scanning electron microscopy (SEM) revealed distinct morphological differences between PEDOT coatings on steel and platinum surfaces. Corrosion studies in HCl and H₂SO₄ solutions demonstrated that PEDOT-coated steel exhibited substantially enhanced corrosion resistance compared to uncoated steel, achieving a protective efficiency of up to 66% after 24 h of immersion. Electrochemical impedance spectroscopy (EIS) further highlighted the superior barrier properties of PEDOT, emphasizing its ability to prevent corrosion by forming an effective barrier layer and promoting the formation of a passive film beneath the coating.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"29 9\",\"pages\":\"3829 - 3842\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-025-06238-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06238-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

导电聚合物(CPs),如聚(3,4-乙烯二氧噻吩)(PEDOT),因其卓越的导电性,化学稳定性和环境耐久性而被广泛认可,使其成为金属表面保护涂层的有希望的候选者。在本研究中,使用循环伏安法(CV)在含有四丁基六氟磷酸铵的非水乙腈介质中电化学沉积PEDOT涂层在低碳钢和铂电极上。优化了沉积条件,包括扫描速率、初始和最终电位、单体浓度和温度,以获得均匀、致密和粘合的聚合物层。最佳条件为EDOT单体浓度为0.01 M,扫描速率为100 mV/s,电位范围为- 0.5至1.8 V (SCE),温度为30°C。结果表明,电聚合过程对钢(活化能Ea = 10.894 kJ/mol)比铂(活化能Ea = 49.426 kJ/mol)更有效,制备的PEDOT膜密度更大,活化能更低。傅里叶变换红外光谱(FTIR)证实了聚合成功,而扫描电子显微镜(SEM)显示了PEDOT涂层在钢和铂表面上的明显形态差异。在HCl和H₂SO₄溶液中的腐蚀研究表明,与未涂覆pedot的钢相比,涂覆pedot的钢具有显着增强的耐腐蚀性,在浸泡24小时后达到高达66%的保护效率。电化学阻抗谱(EIS)进一步强调了PEDOT优越的阻隔性能,强调其通过形成有效的阻隔层和促进涂层下钝化膜的形成来防止腐蚀的能力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrodeposition and corrosion protection properties of conducting PEDOT coatings on steel electrode

Conducting polymers (CPs), such as poly(3,4-ethylenedioxythiophene) (PEDOT), are widely recognized for their exceptional electrical conductivity, chemical stability, and environmental durability, making them promising candidates for protective coatings on metal surfaces. In this study, PEDOT coatings were electrochemically deposited on mild steel and platinum electrodes using cyclic voltammetry (CV) in a non-aqueous acetonitrile medium containing tetrabutylammonium hexafluorophosphate. The deposition conditions—including scan rate, initial and final potentials, monomer concentration, and temperature—were optimized to achieve a homogeneous, compact, and adhesive polymer layer. The optimal conditions involved an EDOT monomer concentration of 0.01 M, a scan rate of 100 mV/s, and a potential range from − 0.5 to 1.8 V (SCE) at 30 °C. The electropolymerization process was found to be more efficient on steel (activation energy, Ea = 10.894 kJ/mol) than on platinum (Ea = 49.426 kJ/mol), resulting in a denser PEDOT film with lower activation energy. Fourier transform infrared spectroscopy (FTIR) confirmed successful polymerization, while scanning electron microscopy (SEM) revealed distinct morphological differences between PEDOT coatings on steel and platinum surfaces. Corrosion studies in HCl and H₂SO₄ solutions demonstrated that PEDOT-coated steel exhibited substantially enhanced corrosion resistance compared to uncoated steel, achieving a protective efficiency of up to 66% after 24 h of immersion. Electrochemical impedance spectroscopy (EIS) further highlighted the superior barrier properties of PEDOT, emphasizing its ability to prevent corrosion by forming an effective barrier layer and promoting the formation of a passive film beneath the coating.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信