Zhangqi Zuo, Lei Chen, Yingjie Zhu, Yuzhou Huang, Fei Li, Xi Xiao
{"title":"有害藻华对海草蓝碳资源的新威胁:机制、生态相互作用和适应性管理策略","authors":"Zhangqi Zuo, Lei Chen, Yingjie Zhu, Yuzhou Huang, Fei Li, Xi Xiao","doi":"10.1007/s40726-025-00367-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Harmful algal blooms (HABs) present a growing threat to seagrass ecosystems, significantly impacting their ecological functions and blue carbon potential. Understanding the complex interactions between HABs and seagrasses is crucial for developing adaptive management strategies to protect seagrass ecosystems.</p><h3>Recent Findings</h3><p>Recent studies reveal that global HAB events have significantly expanded both geographically and in frequency over the past two decades. The geomorphological processes and depositional environments of seagrass meadows, along with the effects of climate change, act as contemporary drivers that influence algal invasion, presence, and retention within seagrass ecosystems. Emerging research demonstrates that macroalgal blooms can significantly accelerate seagrass carbon loss by enhancing decomposition rates and increasing greenhouse gas emissions from blue carbon stocks. Seagrass allelopathy and associated algicidal bacteria play crucial roles in natural HAB control. Advanced monitoring techniques combining artificial intelligence with remote sensing have achieved significant improvements in detecting and tracking HAB events and seagrass ecosystems.</p><h3>Summary</h3><p>This review provides a comprehensive analysis of HAB-seagrass interactions, documenting diverse types of HABs affecting seagrass beds, including macroalgal and microalgal blooms. We examine key environmental factors contributing to HABs in seagrass ecosystems, particularly eutrophication, global warming, and ocean acidification, and analyze their complex impact mechanisms, including light limitation, resource competition, biogeochemical alterations, and toxin effects. Natural defense mechanisms of seagrasses, particularly allelopathy and algicidal bacteria, offer potential solutions for HAB control. Effective protection of these valuable blue carbon resources requires integrated adaptive management strategies, combining advanced monitoring technologies, water quality improvement measures, and community-based conservation approaches.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Threats of Harmful Algal Blooms to Seagrass Blue Carbon Resources: Mechanism, Ecological Interactions, and Adaptive Management Strategies\",\"authors\":\"Zhangqi Zuo, Lei Chen, Yingjie Zhu, Yuzhou Huang, Fei Li, Xi Xiao\",\"doi\":\"10.1007/s40726-025-00367-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of Review</h3><p>Harmful algal blooms (HABs) present a growing threat to seagrass ecosystems, significantly impacting their ecological functions and blue carbon potential. Understanding the complex interactions between HABs and seagrasses is crucial for developing adaptive management strategies to protect seagrass ecosystems.</p><h3>Recent Findings</h3><p>Recent studies reveal that global HAB events have significantly expanded both geographically and in frequency over the past two decades. The geomorphological processes and depositional environments of seagrass meadows, along with the effects of climate change, act as contemporary drivers that influence algal invasion, presence, and retention within seagrass ecosystems. Emerging research demonstrates that macroalgal blooms can significantly accelerate seagrass carbon loss by enhancing decomposition rates and increasing greenhouse gas emissions from blue carbon stocks. Seagrass allelopathy and associated algicidal bacteria play crucial roles in natural HAB control. Advanced monitoring techniques combining artificial intelligence with remote sensing have achieved significant improvements in detecting and tracking HAB events and seagrass ecosystems.</p><h3>Summary</h3><p>This review provides a comprehensive analysis of HAB-seagrass interactions, documenting diverse types of HABs affecting seagrass beds, including macroalgal and microalgal blooms. We examine key environmental factors contributing to HABs in seagrass ecosystems, particularly eutrophication, global warming, and ocean acidification, and analyze their complex impact mechanisms, including light limitation, resource competition, biogeochemical alterations, and toxin effects. Natural defense mechanisms of seagrasses, particularly allelopathy and algicidal bacteria, offer potential solutions for HAB control. Effective protection of these valuable blue carbon resources requires integrated adaptive management strategies, combining advanced monitoring technologies, water quality improvement measures, and community-based conservation approaches.</p></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-025-00367-5\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00367-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Emerging Threats of Harmful Algal Blooms to Seagrass Blue Carbon Resources: Mechanism, Ecological Interactions, and Adaptive Management Strategies
Purpose of Review
Harmful algal blooms (HABs) present a growing threat to seagrass ecosystems, significantly impacting their ecological functions and blue carbon potential. Understanding the complex interactions between HABs and seagrasses is crucial for developing adaptive management strategies to protect seagrass ecosystems.
Recent Findings
Recent studies reveal that global HAB events have significantly expanded both geographically and in frequency over the past two decades. The geomorphological processes and depositional environments of seagrass meadows, along with the effects of climate change, act as contemporary drivers that influence algal invasion, presence, and retention within seagrass ecosystems. Emerging research demonstrates that macroalgal blooms can significantly accelerate seagrass carbon loss by enhancing decomposition rates and increasing greenhouse gas emissions from blue carbon stocks. Seagrass allelopathy and associated algicidal bacteria play crucial roles in natural HAB control. Advanced monitoring techniques combining artificial intelligence with remote sensing have achieved significant improvements in detecting and tracking HAB events and seagrass ecosystems.
Summary
This review provides a comprehensive analysis of HAB-seagrass interactions, documenting diverse types of HABs affecting seagrass beds, including macroalgal and microalgal blooms. We examine key environmental factors contributing to HABs in seagrass ecosystems, particularly eutrophication, global warming, and ocean acidification, and analyze their complex impact mechanisms, including light limitation, resource competition, biogeochemical alterations, and toxin effects. Natural defense mechanisms of seagrasses, particularly allelopathy and algicidal bacteria, offer potential solutions for HAB control. Effective protection of these valuable blue carbon resources requires integrated adaptive management strategies, combining advanced monitoring technologies, water quality improvement measures, and community-based conservation approaches.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.