通过ChCl-EG des介导合成非晶态Co-S纳米颗粒的协同硫工程,实现高效的整体水裂解

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-06-11 DOI:10.1007/s11581-025-06467-y
Youpo Mise, Shaohua Wang, Wen Shi, Yakun Yin, Juan An, Xuejiao Zhou, Wentang Xia, Wenqiang Yang
{"title":"通过ChCl-EG des介导合成非晶态Co-S纳米颗粒的协同硫工程,实现高效的整体水裂解","authors":"Youpo Mise,&nbsp;Shaohua Wang,&nbsp;Wen Shi,&nbsp;Yakun Yin,&nbsp;Juan An,&nbsp;Xuejiao Zhou,&nbsp;Wentang Xia,&nbsp;Wenqiang Yang","doi":"10.1007/s11581-025-06467-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a green strategy for synthesizing amorphous cobalt sulfide (Co–S) bifunctional electrocatalysts via a choline chloride–ethylene glycol deep eutectic solvent (DES) under ambient conditions, addressing ionic coordination dynamics and defect engineering for enhanced solid–state ionic/electronic transport in energy conversion. By modulating the equilibrium between Co<sup>2+</sup> and S₂O₃<sup>2-</sup> ions in Ethaline, we fabricated monodisperse Co–150S nanoparticles (~ 78 nm) with tailored sulfur content (S/Co = 1.9), an amorphous architecture, and abundant oxygen vacancies. These structural features synergistically optimized ionic diffusion pathways and electronic conductivity, achieving exceptional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities in alkaline media. The Co–150S/NF electrode demonstrated a volcano-like sulfur-dependent activity profile, achieving the highest electrochemically active surface area (ECSA, 3.7 cm<sup>2</sup>) and ultralow overpotentials of − 105 mV (HER) and 277 mV (OER) at 10 mA cm⁻<sup>2</sup>, comparable to benchmark Pt/C and RuO₂ catalysts. Post-electrolysis characterization revealed dynamic structural reorganization during HER and OER operations, involving over 80 at% sulfur depletion and the formation of metastable Co-rich phases that maintained catalytic functionality. In overall water splitting, the system required only 1.62 V to drive 10 mA cm⁻<sup>2</sup> with minimal activity decay (1.5 mV h⁻<sup>1</sup> over 26 h). Mechanistic investigations revealed that sulfur incorporation initiates a multiscale optimization process: (i) DES–mediated ionic confinement prevents particle aggregation, promoting uniform nanosphere formation; (ii) modulation of the electronic structure through nonstoichiometric Co–S coordination; and (iii) defect engineering through the enrichment of oxygen vacancies. This study provides insights into ionic coordination mechanisms in non–aqueous solvents and defect–mediated ion transport in amorphous solids, suggesting a potential strategy for developing electrocatalysts applicable to related energy storage technologies.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 8","pages":"8221 - 8233"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic sulfur engineering in Amorphous Co–S nanoparticles via ChCl–EG DES–mediated synthesis for efficient overall water splitting\",\"authors\":\"Youpo Mise,&nbsp;Shaohua Wang,&nbsp;Wen Shi,&nbsp;Yakun Yin,&nbsp;Juan An,&nbsp;Xuejiao Zhou,&nbsp;Wentang Xia,&nbsp;Wenqiang Yang\",\"doi\":\"10.1007/s11581-025-06467-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a green strategy for synthesizing amorphous cobalt sulfide (Co–S) bifunctional electrocatalysts via a choline chloride–ethylene glycol deep eutectic solvent (DES) under ambient conditions, addressing ionic coordination dynamics and defect engineering for enhanced solid–state ionic/electronic transport in energy conversion. By modulating the equilibrium between Co<sup>2+</sup> and S₂O₃<sup>2-</sup> ions in Ethaline, we fabricated monodisperse Co–150S nanoparticles (~ 78 nm) with tailored sulfur content (S/Co = 1.9), an amorphous architecture, and abundant oxygen vacancies. These structural features synergistically optimized ionic diffusion pathways and electronic conductivity, achieving exceptional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities in alkaline media. The Co–150S/NF electrode demonstrated a volcano-like sulfur-dependent activity profile, achieving the highest electrochemically active surface area (ECSA, 3.7 cm<sup>2</sup>) and ultralow overpotentials of − 105 mV (HER) and 277 mV (OER) at 10 mA cm⁻<sup>2</sup>, comparable to benchmark Pt/C and RuO₂ catalysts. Post-electrolysis characterization revealed dynamic structural reorganization during HER and OER operations, involving over 80 at% sulfur depletion and the formation of metastable Co-rich phases that maintained catalytic functionality. In overall water splitting, the system required only 1.62 V to drive 10 mA cm⁻<sup>2</sup> with minimal activity decay (1.5 mV h⁻<sup>1</sup> over 26 h). Mechanistic investigations revealed that sulfur incorporation initiates a multiscale optimization process: (i) DES–mediated ionic confinement prevents particle aggregation, promoting uniform nanosphere formation; (ii) modulation of the electronic structure through nonstoichiometric Co–S coordination; and (iii) defect engineering through the enrichment of oxygen vacancies. This study provides insights into ionic coordination mechanisms in non–aqueous solvents and defect–mediated ion transport in amorphous solids, suggesting a potential strategy for developing electrocatalysts applicable to related energy storage technologies.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 8\",\"pages\":\"8221 - 8233\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06467-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06467-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种在环境条件下通过氯化胆碱-乙二醇深度共晶溶剂(DES)合成无定形硫化钴(Co-S)双功能电催化剂的绿色策略,解决了能量转换中增强固态离子/电子输运的离子配位动力学和缺陷工程问题。通过调节乙炔中Co2+和S₂O₃2-离子之间的平衡,制备了单分散的Co - 150s纳米粒子(~ 78 nm),该纳米粒子具有定制的硫含量(S/Co = 1.9)、无定形结构和丰富的氧空位。这些结构特征协同优化了离子扩散途径和电子导电性,在碱性介质中实现了优异的析氢反应(HER)和析氧反应(OER)活性。Co-150S /NF电极表现出类似火山的硫依赖活性谱,在10 mA cm - 2时达到最高的电化学活性表面积(ECSA, 3.7 cm2)和- 105 mV (HER)和277 mV (OER)的超低过电位,与基准Pt/C和RuO₂催化剂相当。电解后的表征揭示了在HER和OER操作过程中的动态结构重组,涉及超过80%的硫耗尽和亚稳富co相的形成,保持了催化功能。在整个水分解过程中,该系统只需要1.62伏就能驱动10毫微米毒发展,并且活度衰减最小(在26小时内达到1.5毫微米毒发展)。机制研究表明,硫的加入启动了一个多尺度优化过程:(1)des介导的离子约束阻止粒子聚集,促进均匀的纳米球形成;(ii)通过非化学计量Co-S配位调制电子结构;(3)通过富集氧空位进行缺陷工程。该研究为非水溶剂中的离子配位机制和非晶固体中缺陷介导的离子传输提供了见解,为开发适用于相关储能技术的电催化剂提供了潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic sulfur engineering in Amorphous Co–S nanoparticles via ChCl–EG DES–mediated synthesis for efficient overall water splitting

This study presents a green strategy for synthesizing amorphous cobalt sulfide (Co–S) bifunctional electrocatalysts via a choline chloride–ethylene glycol deep eutectic solvent (DES) under ambient conditions, addressing ionic coordination dynamics and defect engineering for enhanced solid–state ionic/electronic transport in energy conversion. By modulating the equilibrium between Co2+ and S₂O₃2- ions in Ethaline, we fabricated monodisperse Co–150S nanoparticles (~ 78 nm) with tailored sulfur content (S/Co = 1.9), an amorphous architecture, and abundant oxygen vacancies. These structural features synergistically optimized ionic diffusion pathways and electronic conductivity, achieving exceptional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities in alkaline media. The Co–150S/NF electrode demonstrated a volcano-like sulfur-dependent activity profile, achieving the highest electrochemically active surface area (ECSA, 3.7 cm2) and ultralow overpotentials of − 105 mV (HER) and 277 mV (OER) at 10 mA cm⁻2, comparable to benchmark Pt/C and RuO₂ catalysts. Post-electrolysis characterization revealed dynamic structural reorganization during HER and OER operations, involving over 80 at% sulfur depletion and the formation of metastable Co-rich phases that maintained catalytic functionality. In overall water splitting, the system required only 1.62 V to drive 10 mA cm⁻2 with minimal activity decay (1.5 mV h⁻1 over 26 h). Mechanistic investigations revealed that sulfur incorporation initiates a multiscale optimization process: (i) DES–mediated ionic confinement prevents particle aggregation, promoting uniform nanosphere formation; (ii) modulation of the electronic structure through nonstoichiometric Co–S coordination; and (iii) defect engineering through the enrichment of oxygen vacancies. This study provides insights into ionic coordination mechanisms in non–aqueous solvents and defect–mediated ion transport in amorphous solids, suggesting a potential strategy for developing electrocatalysts applicable to related energy storage technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信