弯曲裂纹路径应力强度因子的DIC分析

IF 2.5 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. Corre, F. Hild, V. Lazarus
{"title":"弯曲裂纹路径应力强度因子的DIC分析","authors":"T. Corre,&nbsp;F. Hild,&nbsp;V. Lazarus","doi":"10.1007/s10704-025-00862-2","DOIUrl":null,"url":null,"abstract":"<div><p>Sharp kinks may be observed under shear loading or in materials containing weak directions, such as those produced by additive manufacturing. A better understanding of the fracture of these materials, both theoretically and experimentally, is required to deploy them in structural applications. This study focuses on the measurement of stress intensity factors (SIFs) around a sharp kink using digital image correlation (DIC). The performances of two DIC-based techniques, namely, integrated-DIC and post-processing of DIC-measured displacement fields, are assessed on a benchmark test using fused deposit modeling capabilities, and are compared to a reference finite element solution. It is shown that Williams’ expansion remains valid on a large enough region around the crack to extract reliable SIFs even very close to the crack kink. Both techniques are very trustworthy, provided the SIF identification zone is carefully defined to exclude the kink zone of influence.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress intensity factor determination along a kinked crack path by DIC analyses\",\"authors\":\"T. Corre,&nbsp;F. Hild,&nbsp;V. Lazarus\",\"doi\":\"10.1007/s10704-025-00862-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sharp kinks may be observed under shear loading or in materials containing weak directions, such as those produced by additive manufacturing. A better understanding of the fracture of these materials, both theoretically and experimentally, is required to deploy them in structural applications. This study focuses on the measurement of stress intensity factors (SIFs) around a sharp kink using digital image correlation (DIC). The performances of two DIC-based techniques, namely, integrated-DIC and post-processing of DIC-measured displacement fields, are assessed on a benchmark test using fused deposit modeling capabilities, and are compared to a reference finite element solution. It is shown that Williams’ expansion remains valid on a large enough region around the crack to extract reliable SIFs even very close to the crack kink. Both techniques are very trustworthy, provided the SIF identification zone is carefully defined to exclude the kink zone of influence.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-025-00862-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00862-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在剪切载荷下或在含有弱方向的材料中,例如通过增材制造生产的材料中,可以观察到尖锐的扭结。在理论和实验上更好地理解这些材料的断裂,需要在结构应用中部署它们。本研究的重点是使用数字图像相关(DIC)测量尖锐扭结周围的应力强度因子(SIFs)。基于dic的两种技术,即集成dic和dic测量位移场的后处理,在使用熔融沉积建模能力的基准测试中进行了评估,并与参考有限元解决方案进行了比较。结果表明,Williams展开在裂纹周围足够大的区域内仍然有效,即使非常接近裂纹扭结,也可以提取可靠的SIFs。如果仔细定义SIF识别区以排除扭结影响区,这两种技术都是非常值得信赖的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stress intensity factor determination along a kinked crack path by DIC analyses

Stress intensity factor determination along a kinked crack path by DIC analyses

Sharp kinks may be observed under shear loading or in materials containing weak directions, such as those produced by additive manufacturing. A better understanding of the fracture of these materials, both theoretically and experimentally, is required to deploy them in structural applications. This study focuses on the measurement of stress intensity factors (SIFs) around a sharp kink using digital image correlation (DIC). The performances of two DIC-based techniques, namely, integrated-DIC and post-processing of DIC-measured displacement fields, are assessed on a benchmark test using fused deposit modeling capabilities, and are compared to a reference finite element solution. It is shown that Williams’ expansion remains valid on a large enough region around the crack to extract reliable SIFs even very close to the crack kink. Both techniques are very trustworthy, provided the SIF identification zone is carefully defined to exclude the kink zone of influence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信