CO氧化反应中sno2基单原子催化剂的理论筛选

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL
Wei Tan, Xuandong Li, Xin Li
{"title":"CO氧化反应中sno2基单原子催化剂的理论筛选","authors":"Wei Tan,&nbsp;Xuandong Li,&nbsp;Xin Li","doi":"10.1007/s11144-025-02830-2","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on investigating the properties of single transition metal (TM) atoms decorated on SnO<sub>2</sub> (110) surface through density functional theory (DFT), specifically for CO catalytic oxidation. The analysis reveals that the H<sub>l</sub> site offers the optimal adsorption site on SnO<sub>2</sub> (110) surface. The negative binding energies (<i>BE</i>s) suggest that TM/SnO<sub>2</sub> single-atom catalysts (SACs) are thermodynamically stable. Among the catalysts examined, the Pt atom stands out due to its d-band center (ε<sub>d</sub>), which facilitates charge transfer and enhances its catalytic activity. Furthermore, the Pt/SnO<sub>2</sub> SAC successfully facilitates the CO oxidation process, primarily through the Langmuir–Hinshelwood (L–H) mechanism as demonstrated by mechanistic exploration. These findings deepen the theoretical knowledge of metal-support interactions and underscore the promise of SnO<sub>2</sub>-based SACs in CO oxidation applications.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 4","pages":"2653 - 2669"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical screening of SnO2-based single-atom catalysts for CO oxidation reaction\",\"authors\":\"Wei Tan,&nbsp;Xuandong Li,&nbsp;Xin Li\",\"doi\":\"10.1007/s11144-025-02830-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work focuses on investigating the properties of single transition metal (TM) atoms decorated on SnO<sub>2</sub> (110) surface through density functional theory (DFT), specifically for CO catalytic oxidation. The analysis reveals that the H<sub>l</sub> site offers the optimal adsorption site on SnO<sub>2</sub> (110) surface. The negative binding energies (<i>BE</i>s) suggest that TM/SnO<sub>2</sub> single-atom catalysts (SACs) are thermodynamically stable. Among the catalysts examined, the Pt atom stands out due to its d-band center (ε<sub>d</sub>), which facilitates charge transfer and enhances its catalytic activity. Furthermore, the Pt/SnO<sub>2</sub> SAC successfully facilitates the CO oxidation process, primarily through the Langmuir–Hinshelwood (L–H) mechanism as demonstrated by mechanistic exploration. These findings deepen the theoretical knowledge of metal-support interactions and underscore the promise of SnO<sub>2</sub>-based SACs in CO oxidation applications.</p></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"138 4\",\"pages\":\"2653 - 2669\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-025-02830-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-025-02830-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文主要通过密度泛函理论(DFT)研究了在SnO2(110)表面修饰的单个过渡金属(TM)原子的性质,特别是CO催化氧化。分析表明,Hl位点是SnO2(110)表面的最佳吸附位点。负结合能(BEs)表明TM/SnO2单原子催化剂(SACs)是热力学稳定的。在所检测的催化剂中,Pt原子因其d带中心(εd)而引人注目,这有利于电荷转移,提高了其催化活性。此外,Pt/SnO2 SAC成功地促进了CO氧化过程,主要是通过Langmuir-Hinshelwood (L-H)机制,机理探索证实了这一点。这些发现加深了金属-载体相互作用的理论知识,并强调了sno2基SACs在CO氧化应用中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical screening of SnO2-based single-atom catalysts for CO oxidation reaction

This work focuses on investigating the properties of single transition metal (TM) atoms decorated on SnO2 (110) surface through density functional theory (DFT), specifically for CO catalytic oxidation. The analysis reveals that the Hl site offers the optimal adsorption site on SnO2 (110) surface. The negative binding energies (BEs) suggest that TM/SnO2 single-atom catalysts (SACs) are thermodynamically stable. Among the catalysts examined, the Pt atom stands out due to its d-band center (εd), which facilitates charge transfer and enhances its catalytic activity. Furthermore, the Pt/SnO2 SAC successfully facilitates the CO oxidation process, primarily through the Langmuir–Hinshelwood (L–H) mechanism as demonstrated by mechanistic exploration. These findings deepen the theoretical knowledge of metal-support interactions and underscore the promise of SnO2-based SACs in CO oxidation applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信