{"title":"木材渗透率建模与验证:分形理论与压汞孔隙度法相结合","authors":"Zhipeng Zhu, Feifan Lv, Jiajun Lv, Riwei Huang, Chiyang Mao, Yingchun Cai, Wanli Cheng, Antoni Sánchez-Ferrer, Jingyao Zhao","doi":"10.1007/s00226-025-01680-4","DOIUrl":null,"url":null,"abstract":"<div><p>The permeability of wood materials significantly affects wood modification, drying and further processing of wood-based building materials, and there is a need for a better understanding and evaluation of the permeability of wood materials. This paper presents a novel method for estimating the macroscopic permeability in wood by combining mercury intrusion porosimetry (MIP) data with the fractal theory. The characterization of wood’s structural parameters through MIP provides essential geometric data for the subsequent modelling process. A computational model for permeability was established based on principles of fractal geometry and seepage flow theory. This model aimed to elucidate the relationship between the structural characteristics of wood and its permeability behaviour. By deriving an explicit expression for permeability, the model incorporated critical structural parameters, e.g., minimum and maximum pore size, pore size distribution, porosity, fractal dimension, and the fractal dimension associated with tortuosity. The permeability of the three wood species studied, i.e., Scots pine, white birch, and oak, was 28.6, 13.6 and 1.4 mD, respectively. To validate the model, the calculated permeability values were compared with experimentally measured data, showing a strong correlation and confirming that the model accurately reflects the permeability behaviour of wood based on its structural characteristics. Notably, the model demonstrated the effectiveness of utilizing MIP data in conjunction with fractal theory, thus, the computational efficiency of this method significantly surpassed that of traditional numerical simulations, which allowed a better understanding of the interplay between structure and permeability in wood.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-025-01680-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling and validation of wood permeability: combining fractal theory with mercury intrusion porosimetry method\",\"authors\":\"Zhipeng Zhu, Feifan Lv, Jiajun Lv, Riwei Huang, Chiyang Mao, Yingchun Cai, Wanli Cheng, Antoni Sánchez-Ferrer, Jingyao Zhao\",\"doi\":\"10.1007/s00226-025-01680-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The permeability of wood materials significantly affects wood modification, drying and further processing of wood-based building materials, and there is a need for a better understanding and evaluation of the permeability of wood materials. This paper presents a novel method for estimating the macroscopic permeability in wood by combining mercury intrusion porosimetry (MIP) data with the fractal theory. The characterization of wood’s structural parameters through MIP provides essential geometric data for the subsequent modelling process. A computational model for permeability was established based on principles of fractal geometry and seepage flow theory. This model aimed to elucidate the relationship between the structural characteristics of wood and its permeability behaviour. By deriving an explicit expression for permeability, the model incorporated critical structural parameters, e.g., minimum and maximum pore size, pore size distribution, porosity, fractal dimension, and the fractal dimension associated with tortuosity. The permeability of the three wood species studied, i.e., Scots pine, white birch, and oak, was 28.6, 13.6 and 1.4 mD, respectively. To validate the model, the calculated permeability values were compared with experimentally measured data, showing a strong correlation and confirming that the model accurately reflects the permeability behaviour of wood based on its structural characteristics. Notably, the model demonstrated the effectiveness of utilizing MIP data in conjunction with fractal theory, thus, the computational efficiency of this method significantly surpassed that of traditional numerical simulations, which allowed a better understanding of the interplay between structure and permeability in wood.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"59 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00226-025-01680-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-025-01680-4\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01680-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Modelling and validation of wood permeability: combining fractal theory with mercury intrusion porosimetry method
The permeability of wood materials significantly affects wood modification, drying and further processing of wood-based building materials, and there is a need for a better understanding and evaluation of the permeability of wood materials. This paper presents a novel method for estimating the macroscopic permeability in wood by combining mercury intrusion porosimetry (MIP) data with the fractal theory. The characterization of wood’s structural parameters through MIP provides essential geometric data for the subsequent modelling process. A computational model for permeability was established based on principles of fractal geometry and seepage flow theory. This model aimed to elucidate the relationship between the structural characteristics of wood and its permeability behaviour. By deriving an explicit expression for permeability, the model incorporated critical structural parameters, e.g., minimum and maximum pore size, pore size distribution, porosity, fractal dimension, and the fractal dimension associated with tortuosity. The permeability of the three wood species studied, i.e., Scots pine, white birch, and oak, was 28.6, 13.6 and 1.4 mD, respectively. To validate the model, the calculated permeability values were compared with experimentally measured data, showing a strong correlation and confirming that the model accurately reflects the permeability behaviour of wood based on its structural characteristics. Notably, the model demonstrated the effectiveness of utilizing MIP data in conjunction with fractal theory, thus, the computational efficiency of this method significantly surpassed that of traditional numerical simulations, which allowed a better understanding of the interplay between structure and permeability in wood.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.