(g-C3N4)-MoS2@MOF复合材料持久析氢催化剂的设计与电化学性能

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-06-07 DOI:10.1007/s11581-025-06428-5
Janakiraman V., Gokulkannan K., Anitha R., Ammal Dhanalakshmi M., Mohamed Abbas, Vijayakumar Paranthaman, Ganesh Kumar K.
{"title":"(g-C3N4)-MoS2@MOF复合材料持久析氢催化剂的设计与电化学性能","authors":"Janakiraman V.,&nbsp;Gokulkannan K.,&nbsp;Anitha R.,&nbsp;Ammal Dhanalakshmi M.,&nbsp;Mohamed Abbas,&nbsp;Vijayakumar Paranthaman,&nbsp;Ganesh Kumar K.","doi":"10.1007/s11581-025-06428-5","DOIUrl":null,"url":null,"abstract":"<div><p>In pursuit of efficient hydrogen generation and sustainable environmental remediation, a novel ternary heterojunction composite (g-C<sub>3</sub>N<sub>4</sub>)-MoS<sub>2</sub>@MOF has been successfully synthesized via a hydrothermal method. This advanced nanocomposite integrates graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), molybdenum disulfide (MoS<sub>2</sub>), and a metal–organic framework (MOF), aiming to enhance electrocatalytic performance. Structural characterization using X-ray diffraction (XRD) and Raman spectroscopy confirmed the phase purity and composition of the composite material, while field emission scanning electron microscopy (FESEM) revealed a distinctive morphology: flower-like g-C<sub>3</sub>N<sub>4</sub>, layered MoS<sub>2</sub>, and polished MOF fragments forming a robust composite matrix. Electrochemical studies demonstrated that hydrogen evolution follows the Volmer-Tafel mechanism, with a low Tafel slope of ~ 89 mV/decade, indicating favorable reaction kinetics. Chronoamperometry confirmed the catalyst’s remarkable electrochemical stability over 12 h. Furthermore, electrochemical impedance spectroscopy (EIS) performed at a constant potential of 0.146 V across a broad frequency range (100 MHz to 1 Hz) confirmed effective charge transfer properties. This study presents a structurally durable and highly efficient catalyst for the hydrogen evolution reaction, emphasizing its potential for integration into next-generation clean energy and environmental remediation systems.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 8","pages":"8281 - 8293"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and electrochemical performance of a (g-C3N4)-MoS2@MOF composite as a durable catalyst for hydrogen evolution\",\"authors\":\"Janakiraman V.,&nbsp;Gokulkannan K.,&nbsp;Anitha R.,&nbsp;Ammal Dhanalakshmi M.,&nbsp;Mohamed Abbas,&nbsp;Vijayakumar Paranthaman,&nbsp;Ganesh Kumar K.\",\"doi\":\"10.1007/s11581-025-06428-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In pursuit of efficient hydrogen generation and sustainable environmental remediation, a novel ternary heterojunction composite (g-C<sub>3</sub>N<sub>4</sub>)-MoS<sub>2</sub>@MOF has been successfully synthesized via a hydrothermal method. This advanced nanocomposite integrates graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), molybdenum disulfide (MoS<sub>2</sub>), and a metal–organic framework (MOF), aiming to enhance electrocatalytic performance. Structural characterization using X-ray diffraction (XRD) and Raman spectroscopy confirmed the phase purity and composition of the composite material, while field emission scanning electron microscopy (FESEM) revealed a distinctive morphology: flower-like g-C<sub>3</sub>N<sub>4</sub>, layered MoS<sub>2</sub>, and polished MOF fragments forming a robust composite matrix. Electrochemical studies demonstrated that hydrogen evolution follows the Volmer-Tafel mechanism, with a low Tafel slope of ~ 89 mV/decade, indicating favorable reaction kinetics. Chronoamperometry confirmed the catalyst’s remarkable electrochemical stability over 12 h. Furthermore, electrochemical impedance spectroscopy (EIS) performed at a constant potential of 0.146 V across a broad frequency range (100 MHz to 1 Hz) confirmed effective charge transfer properties. This study presents a structurally durable and highly efficient catalyst for the hydrogen evolution reaction, emphasizing its potential for integration into next-generation clean energy and environmental remediation systems.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 8\",\"pages\":\"8281 - 8293\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06428-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06428-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了追求高效制氢和可持续的环境修复,通过水热法成功合成了一种新型三元异质结复合材料(g-C3N4)-MoS2@MOF。这种先进的纳米复合材料集成了石墨氮化碳(g-C3N4)、二硫化钼(MoS2)和金属有机框架(MOF),旨在提高电催化性能。利用x射线衍射(XRD)和拉曼光谱进行结构表征,证实了复合材料的相纯度和组成,而场发射扫描电子显微镜(FESEM)显示了独特的形态:花状的g-C3N4、层状的MoS2和抛光的MOF碎片形成了坚固的复合基体。电化学研究表明,氢的析出遵循Volmer-Tafel机制,Tafel斜率较低,约为89 mV/ 10年,表明反应动力学良好。此外,电化学阻抗谱(EIS)在0.146 V的恒定电位下,在宽频率范围(100 MHz至1 Hz)下进行,证实了有效的电荷转移特性。本研究提出了一种结构耐用且高效的析氢反应催化剂,强调了其集成到下一代清洁能源和环境修复系统中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and electrochemical performance of a (g-C3N4)-MoS2@MOF composite as a durable catalyst for hydrogen evolution

In pursuit of efficient hydrogen generation and sustainable environmental remediation, a novel ternary heterojunction composite (g-C3N4)-MoS2@MOF has been successfully synthesized via a hydrothermal method. This advanced nanocomposite integrates graphitic carbon nitride (g-C3N4), molybdenum disulfide (MoS2), and a metal–organic framework (MOF), aiming to enhance electrocatalytic performance. Structural characterization using X-ray diffraction (XRD) and Raman spectroscopy confirmed the phase purity and composition of the composite material, while field emission scanning electron microscopy (FESEM) revealed a distinctive morphology: flower-like g-C3N4, layered MoS2, and polished MOF fragments forming a robust composite matrix. Electrochemical studies demonstrated that hydrogen evolution follows the Volmer-Tafel mechanism, with a low Tafel slope of ~ 89 mV/decade, indicating favorable reaction kinetics. Chronoamperometry confirmed the catalyst’s remarkable electrochemical stability over 12 h. Furthermore, electrochemical impedance spectroscopy (EIS) performed at a constant potential of 0.146 V across a broad frequency range (100 MHz to 1 Hz) confirmed effective charge transfer properties. This study presents a structurally durable and highly efficient catalyst for the hydrogen evolution reaction, emphasizing its potential for integration into next-generation clean energy and environmental remediation systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信