预测不同结构聚合物的玻璃化转变温度

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Xinliang Yu
{"title":"预测不同结构聚合物的玻璃化转变温度","authors":"Xinliang Yu","doi":"10.1007/s00396-025-05421-8","DOIUrl":null,"url":null,"abstract":"<div><p>This work proposes an accurate quantitative structure–property relationship (QSPR) model for glass transition temperatures (<i>T</i><sub>g</sub>s) of 315 polymers with diverse structures. Support vector regression (SVR), combined with a genetic algorithm, was used to develop the SVR model that achieved a determination coefficient (<i>R</i><sup>2</sup>) of 0.937 and a root-mean-square (<i>rms</i>) error of 25.047 K for 79 <i>T</i><sub>g</sub>s of polymers in the test set. The investigation shows that increasing the percentage of C atoms, molecular polarity, complementary information content index, spectral mean absolute deviation and eigenvalue in augmented adjacency matrix by introducing benzene, naphthalene, anthracene, pyridine, quinoline, imide, and/or C‒N atom pairs with a topological distance of 9, can result in high chain rigidity and high <i>T</i><sub>g</sub>s. Conversely, increasing the free volume and flexible segments by introducing groups such as ‒Si‒O‒, ‒Si‒C‒, and ‒Si‒N‒ in the backbone chain, N and O atom pairs, S and X (heteroatoms) atom pairs with a topological distance of 1, F‒X with a topological distance of 2 and CH<sub>2</sub>RX groups can bring down <i>T</i><sub>g</sub>s.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 7","pages":"1287 - 1297"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting glass transition temperatures for structurally diverse polymers\",\"authors\":\"Xinliang Yu\",\"doi\":\"10.1007/s00396-025-05421-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work proposes an accurate quantitative structure–property relationship (QSPR) model for glass transition temperatures (<i>T</i><sub>g</sub>s) of 315 polymers with diverse structures. Support vector regression (SVR), combined with a genetic algorithm, was used to develop the SVR model that achieved a determination coefficient (<i>R</i><sup>2</sup>) of 0.937 and a root-mean-square (<i>rms</i>) error of 25.047 K for 79 <i>T</i><sub>g</sub>s of polymers in the test set. The investigation shows that increasing the percentage of C atoms, molecular polarity, complementary information content index, spectral mean absolute deviation and eigenvalue in augmented adjacency matrix by introducing benzene, naphthalene, anthracene, pyridine, quinoline, imide, and/or C‒N atom pairs with a topological distance of 9, can result in high chain rigidity and high <i>T</i><sub>g</sub>s. Conversely, increasing the free volume and flexible segments by introducing groups such as ‒Si‒O‒, ‒Si‒C‒, and ‒Si‒N‒ in the backbone chain, N and O atom pairs, S and X (heteroatoms) atom pairs with a topological distance of 1, F‒X with a topological distance of 2 and CH<sub>2</sub>RX groups can bring down <i>T</i><sub>g</sub>s.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"303 7\",\"pages\":\"1287 - 1297\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-025-05421-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-025-05421-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了315种不同结构聚合物玻璃化转变温度(Tgs)的精确定量结构-性能关系(QSPR)模型。采用支持向量回归(SVR)与遗传算法相结合的方法建立SVR模型,该模型对测试集中79 Tgs聚合物的决定系数(R2)为0.937,均方根误差(rms)为25.047 K。研究表明,通过引入拓扑距离为9的苯、萘、蒽、吡啶、喹啉、亚胺和/或C - n原子对,增加增强邻接矩阵中C原子的百分比、分子极性、互补信息含量指数、光谱平均绝对偏差和特征值,可以获得高链刚性和高Tgs。相反,通过在主链中引入- si - O -、- si - c -、- si - N -等基团、N和O原子对、拓扑距离为1的S和X(杂原子)原子对、拓扑距离为2的F-X和CH2RX基团来增加自由体积和柔性段,可以降低Tgs。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting glass transition temperatures for structurally diverse polymers

This work proposes an accurate quantitative structure–property relationship (QSPR) model for glass transition temperatures (Tgs) of 315 polymers with diverse structures. Support vector regression (SVR), combined with a genetic algorithm, was used to develop the SVR model that achieved a determination coefficient (R2) of 0.937 and a root-mean-square (rms) error of 25.047 K for 79 Tgs of polymers in the test set. The investigation shows that increasing the percentage of C atoms, molecular polarity, complementary information content index, spectral mean absolute deviation and eigenvalue in augmented adjacency matrix by introducing benzene, naphthalene, anthracene, pyridine, quinoline, imide, and/or C‒N atom pairs with a topological distance of 9, can result in high chain rigidity and high Tgs. Conversely, increasing the free volume and flexible segments by introducing groups such as ‒Si‒O‒, ‒Si‒C‒, and ‒Si‒N‒ in the backbone chain, N and O atom pairs, S and X (heteroatoms) atom pairs with a topological distance of 1, F‒X with a topological distance of 2 and CH2RX groups can bring down Tgs.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信