一维O(N)模型的松弛时间和拓扑结构

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Pietro Caputo, Sébastien Ott, Assaf Shapira
{"title":"一维O(N)模型的松弛时间和拓扑结构","authors":"Pietro Caputo,&nbsp;Sébastien Ott,&nbsp;Assaf Shapira","doi":"10.1007/s10955-025-03475-0","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the relaxation time (inverse spectral gap) of the one dimensional <i>O</i>(<i>N</i>) model, for all <i>N</i> and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the space dimension, which here is always 1, the boundary condition (free or periodic), and the spin state <span>\\({\\mathbb {S}}^{N-1}\\)</span>, determines the existence or absence of non-trivial homotopy classes in some discrete version. Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states that the system exits at exponential times; while when only one homotopy class exists the relaxation time depends polynomially on the temperature. We prove in the one dimensional case that, indeed, the relaxation time is a proxy to the model’s topological properties via the exponential/polynomial dependence on the temperature.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation Time and Topology in 1D O(N) Models\",\"authors\":\"Pietro Caputo,&nbsp;Sébastien Ott,&nbsp;Assaf Shapira\",\"doi\":\"10.1007/s10955-025-03475-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss the relaxation time (inverse spectral gap) of the one dimensional <i>O</i>(<i>N</i>) model, for all <i>N</i> and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the space dimension, which here is always 1, the boundary condition (free or periodic), and the spin state <span>\\\\({\\\\mathbb {S}}^{N-1}\\\\)</span>, determines the existence or absence of non-trivial homotopy classes in some discrete version. Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states that the system exits at exponential times; while when only one homotopy class exists the relaxation time depends polynomially on the temperature. We prove in the one dimensional case that, indeed, the relaxation time is a proxy to the model’s topological properties via the exponential/polynomial dependence on the temperature.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 7\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03475-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03475-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了一维O(N)模型的松弛时间(逆谱隙),对于所有N和两种类型的边界条件。我们看到了它的低温渐近行为如何受到拓扑结构的影响。空间维度(这里总是1)、边界条件(自由或周期)和自旋状态\({\mathbb {S}}^{N-1}\)的组合决定了在某些离散版本中非平凡同伦类的存在与否。这种非平凡的拓扑结构反映了动力学的瓶颈,创造了系统以指数时间退出的亚稳态;而当只存在一个同伦类时,弛豫时间与温度呈多项式关系。我们证明了在一维情况下,松弛时间确实是模型拓扑性质的一个代理,通过指数/多项式依赖于温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relaxation Time and Topology in 1D O(N) Models

We discuss the relaxation time (inverse spectral gap) of the one dimensional O(N) model, for all N and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the space dimension, which here is always 1, the boundary condition (free or periodic), and the spin state \({\mathbb {S}}^{N-1}\), determines the existence or absence of non-trivial homotopy classes in some discrete version. Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states that the system exits at exponential times; while when only one homotopy class exists the relaxation time depends polynomially on the temperature. We prove in the one dimensional case that, indeed, the relaxation time is a proxy to the model’s topological properties via the exponential/polynomial dependence on the temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信