{"title":"一维O(N)模型的松弛时间和拓扑结构","authors":"Pietro Caputo, Sébastien Ott, Assaf Shapira","doi":"10.1007/s10955-025-03475-0","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the relaxation time (inverse spectral gap) of the one dimensional <i>O</i>(<i>N</i>) model, for all <i>N</i> and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the space dimension, which here is always 1, the boundary condition (free or periodic), and the spin state <span>\\({\\mathbb {S}}^{N-1}\\)</span>, determines the existence or absence of non-trivial homotopy classes in some discrete version. Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states that the system exits at exponential times; while when only one homotopy class exists the relaxation time depends polynomially on the temperature. We prove in the one dimensional case that, indeed, the relaxation time is a proxy to the model’s topological properties via the exponential/polynomial dependence on the temperature.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation Time and Topology in 1D O(N) Models\",\"authors\":\"Pietro Caputo, Sébastien Ott, Assaf Shapira\",\"doi\":\"10.1007/s10955-025-03475-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss the relaxation time (inverse spectral gap) of the one dimensional <i>O</i>(<i>N</i>) model, for all <i>N</i> and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the space dimension, which here is always 1, the boundary condition (free or periodic), and the spin state <span>\\\\({\\\\mathbb {S}}^{N-1}\\\\)</span>, determines the existence or absence of non-trivial homotopy classes in some discrete version. Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states that the system exits at exponential times; while when only one homotopy class exists the relaxation time depends polynomially on the temperature. We prove in the one dimensional case that, indeed, the relaxation time is a proxy to the model’s topological properties via the exponential/polynomial dependence on the temperature.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 7\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03475-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03475-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We discuss the relaxation time (inverse spectral gap) of the one dimensional O(N) model, for all N and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the space dimension, which here is always 1, the boundary condition (free or periodic), and the spin state \({\mathbb {S}}^{N-1}\), determines the existence or absence of non-trivial homotopy classes in some discrete version. Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states that the system exits at exponential times; while when only one homotopy class exists the relaxation time depends polynomially on the temperature. We prove in the one dimensional case that, indeed, the relaxation time is a proxy to the model’s topological properties via the exponential/polynomial dependence on the temperature.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.