基于液态金属衍生的超薄SnO2薄膜的酶功能化场效应晶体管用于葡萄糖检测

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiwei Li  (, ), Fuhai Yu  (, ), Yahua He  (, ), Yang Yang  (, ), Lei Jiang  (, ), Lun Tan  (, ), Liu Yang  (, ), Juan Xiong  (, ), Meilin Wan  (, ), Yongming Hu  (, ), Haoshuang Gu  (, ), Xiaolin Wang  (, ), Zhao Wang  (, )
{"title":"基于液态金属衍生的超薄SnO2薄膜的酶功能化场效应晶体管用于葡萄糖检测","authors":"Zhiwei Li \n (,&nbsp;),&nbsp;Fuhai Yu \n (,&nbsp;),&nbsp;Yahua He \n (,&nbsp;),&nbsp;Yang Yang \n (,&nbsp;),&nbsp;Lei Jiang \n (,&nbsp;),&nbsp;Lun Tan \n (,&nbsp;),&nbsp;Liu Yang \n (,&nbsp;),&nbsp;Juan Xiong \n (,&nbsp;),&nbsp;Meilin Wan \n (,&nbsp;),&nbsp;Yongming Hu \n (,&nbsp;),&nbsp;Haoshuang Gu \n (,&nbsp;),&nbsp;Xiaolin Wang \n (,&nbsp;),&nbsp;Zhao Wang \n (,&nbsp;)","doi":"10.1007/s40843-025-3417-1","DOIUrl":null,"url":null,"abstract":"<div><p>The rising global incidence of diabetes necessitates the development of innovative glucose monitoring technologies to enhance patient care and disease management. Non-invasive glucose detection through sweat analysis offers continuous, painless, and user-friendly solutions. However, challenges remain regarding sensitivity and selectivity. To address this issue, we utilize ultrathin SnO<sub>2</sub> films, which exhibit exceptional electrical sensitivity to surface potential changes, as the active channel in back-gate field effect transistor (FET)-based glucose sensors. These ultrathin SnO<sub>2</sub> films are prepared by annealing atomically thin tin oxides exfoliated from liquid Sn-Bi. The hydroxyl groups on the defective surface serve as effective anchoring sites for stable glucose oxidase (GOX) immobilization. Under optimal device design, enzymatic glucose oxidation results in positive charge accumulation on the SnO<sub>2</sub> layers, which modulates charge carrier density and enhances channel current. This effect is amplified by the FET’s subthreshold characteristics under negative back-gate voltage, enabling rapid, highly sensitive and selective glucose sensing. The proposed FET sensor achieves an ultra-high sensitivity of 1211.11 µA cm<sup>2</sup> µM<sup>−1</sup> and demonstrates near-specific glucose detection amidst other substances in human sweat, indicating its significant potential for non-invasive, continuous glucose monitoring in practical applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 7","pages":"2558 - 2566"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzyme-functionalized field-effect transistors based on liquid-metal-derived ultrathin SnO2 films for glucose detection\",\"authors\":\"Zhiwei Li \\n (,&nbsp;),&nbsp;Fuhai Yu \\n (,&nbsp;),&nbsp;Yahua He \\n (,&nbsp;),&nbsp;Yang Yang \\n (,&nbsp;),&nbsp;Lei Jiang \\n (,&nbsp;),&nbsp;Lun Tan \\n (,&nbsp;),&nbsp;Liu Yang \\n (,&nbsp;),&nbsp;Juan Xiong \\n (,&nbsp;),&nbsp;Meilin Wan \\n (,&nbsp;),&nbsp;Yongming Hu \\n (,&nbsp;),&nbsp;Haoshuang Gu \\n (,&nbsp;),&nbsp;Xiaolin Wang \\n (,&nbsp;),&nbsp;Zhao Wang \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3417-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rising global incidence of diabetes necessitates the development of innovative glucose monitoring technologies to enhance patient care and disease management. Non-invasive glucose detection through sweat analysis offers continuous, painless, and user-friendly solutions. However, challenges remain regarding sensitivity and selectivity. To address this issue, we utilize ultrathin SnO<sub>2</sub> films, which exhibit exceptional electrical sensitivity to surface potential changes, as the active channel in back-gate field effect transistor (FET)-based glucose sensors. These ultrathin SnO<sub>2</sub> films are prepared by annealing atomically thin tin oxides exfoliated from liquid Sn-Bi. The hydroxyl groups on the defective surface serve as effective anchoring sites for stable glucose oxidase (GOX) immobilization. Under optimal device design, enzymatic glucose oxidation results in positive charge accumulation on the SnO<sub>2</sub> layers, which modulates charge carrier density and enhances channel current. This effect is amplified by the FET’s subthreshold characteristics under negative back-gate voltage, enabling rapid, highly sensitive and selective glucose sensing. The proposed FET sensor achieves an ultra-high sensitivity of 1211.11 µA cm<sup>2</sup> µM<sup>−1</sup> and demonstrates near-specific glucose detection amidst other substances in human sweat, indicating its significant potential for non-invasive, continuous glucose monitoring in practical applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 7\",\"pages\":\"2558 - 2566\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3417-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3417-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球糖尿病发病率的上升要求创新血糖监测技术的发展,以加强患者护理和疾病管理。通过汗液分析进行无创血糖检测,提供连续、无痛和用户友好的解决方案。然而,在灵敏度和选择性方面仍然存在挑战。为了解决这个问题,我们利用对表面电位变化具有特殊电敏感性的超薄SnO2薄膜作为基于后门场效应晶体管(FET)的葡萄糖传感器的有源通道。这些超薄SnO2薄膜是通过从液态Sn-Bi中剥离的原子薄锡氧化物退火制备的。缺陷表面的羟基作为稳定葡萄糖氧化酶(GOX)固定的有效锚定位点。在优化的器件设计下,酶促葡萄糖氧化导致SnO2层上的正电荷积累,从而调节载流子密度并增强通道电流。这种效应被负反向电压下FET的亚阈值特性放大,从而实现快速、高灵敏度和选择性的葡萄糖传感。所提出的FET传感器实现了1211.11µA cm2µM−1的超高灵敏度,并且在人体汗液中的其他物质中显示出接近特异性的葡萄糖检测,表明其在实际应用中的无创、连续血糖监测的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzyme-functionalized field-effect transistors based on liquid-metal-derived ultrathin SnO2 films for glucose detection

The rising global incidence of diabetes necessitates the development of innovative glucose monitoring technologies to enhance patient care and disease management. Non-invasive glucose detection through sweat analysis offers continuous, painless, and user-friendly solutions. However, challenges remain regarding sensitivity and selectivity. To address this issue, we utilize ultrathin SnO2 films, which exhibit exceptional electrical sensitivity to surface potential changes, as the active channel in back-gate field effect transistor (FET)-based glucose sensors. These ultrathin SnO2 films are prepared by annealing atomically thin tin oxides exfoliated from liquid Sn-Bi. The hydroxyl groups on the defective surface serve as effective anchoring sites for stable glucose oxidase (GOX) immobilization. Under optimal device design, enzymatic glucose oxidation results in positive charge accumulation on the SnO2 layers, which modulates charge carrier density and enhances channel current. This effect is amplified by the FET’s subthreshold characteristics under negative back-gate voltage, enabling rapid, highly sensitive and selective glucose sensing. The proposed FET sensor achieves an ultra-high sensitivity of 1211.11 µA cm2 µM−1 and demonstrates near-specific glucose detection amidst other substances in human sweat, indicating its significant potential for non-invasive, continuous glucose monitoring in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信