利用磁性核壳纳米粒子高效回收轻、中、重稀土元素

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaohui Mao  (, ), Xuyi Wei  (, ), Yongxiang Sun  (, ), Weiting Zhan  (, ), Ying Hu  (, ), Junwei Han  (, ), Hongbo Zeng  (, )
{"title":"利用磁性核壳纳米粒子高效回收轻、中、重稀土元素","authors":"Xiaohui Mao \n (,&nbsp;),&nbsp;Xuyi Wei \n (,&nbsp;),&nbsp;Yongxiang Sun \n (,&nbsp;),&nbsp;Weiting Zhan \n (,&nbsp;),&nbsp;Ying Hu \n (,&nbsp;),&nbsp;Junwei Han \n (,&nbsp;),&nbsp;Hongbo Zeng \n (,&nbsp;)","doi":"10.1007/s40843-025-3403-x","DOIUrl":null,"url":null,"abstract":"<div><p>The adsorption of rare earth elements (REEs) from wastewater is vital for environmental protection and resource utilization. Adsorbents with magnetic properties are easy to separate but incorporating magnetic particles can reduce adsorption capacity by decreasing the surface area or blocking active sites. Herein, an efficient magnetic adsorbent (i.e., Fe<sub>3</sub>O<sub>4</sub>@PDAPEI), consisting of an Fe<sub>3</sub>O<sub>4</sub> core, a polydopamine (PDA) intermediate layer and a polyethylenimine (PEI) outer layer, was designed to extract Gd<sup>3+</sup>, Nd<sup>3+</sup>, Ho<sup>3+</sup>, and Y<sup>3+</sup> from low-concentration solutions with adsorption capacities of 168.3, 168.5, 179.7, and 180.3 mg/g, respectively. The adsorption capacities exceed those of most reported magnetic REE adsorbents in the literature. The adsorption behavior could be fitted to the pseudo-second-order model, intraparticle diffusion model, and Langmuir model. Fe<sub>3</sub>O<sub>4</sub>@PDAPEI exhibited good reusability, with the adsorption capacity remaining above 90% of the initial value after five reuse cycles. In addition, despite the presence of competing ions (i.e., Na<sup>+</sup>, Mg<sup>2+</sup>, and Al<sup>3+</sup>) in model wastewater, the adsorption capacity could be maintained above 100 mg/g for all four REEs. The adsorption mechanism was investigated via density functional theory calculations, zeta potential measurements, and surface force measurements via atomic force microscopy. REEs could adsorb on Fe<sub>3</sub>O<sub>4</sub>@PDAPEI through binding to primary amines and electrostatic interactions. This work presents a highly efficient magnetic adsorbent and evaluates the underlying interaction mechanism from both theoretical and experimental perspectives, shedding light on facile and efficient REE recovery in various engineering processes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 7","pages":"2459 - 2470"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient recovery of light, medium and heavy rare earth elements using magnetic core-shell nanoparticles\",\"authors\":\"Xiaohui Mao \\n (,&nbsp;),&nbsp;Xuyi Wei \\n (,&nbsp;),&nbsp;Yongxiang Sun \\n (,&nbsp;),&nbsp;Weiting Zhan \\n (,&nbsp;),&nbsp;Ying Hu \\n (,&nbsp;),&nbsp;Junwei Han \\n (,&nbsp;),&nbsp;Hongbo Zeng \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3403-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The adsorption of rare earth elements (REEs) from wastewater is vital for environmental protection and resource utilization. Adsorbents with magnetic properties are easy to separate but incorporating magnetic particles can reduce adsorption capacity by decreasing the surface area or blocking active sites. Herein, an efficient magnetic adsorbent (i.e., Fe<sub>3</sub>O<sub>4</sub>@PDAPEI), consisting of an Fe<sub>3</sub>O<sub>4</sub> core, a polydopamine (PDA) intermediate layer and a polyethylenimine (PEI) outer layer, was designed to extract Gd<sup>3+</sup>, Nd<sup>3+</sup>, Ho<sup>3+</sup>, and Y<sup>3+</sup> from low-concentration solutions with adsorption capacities of 168.3, 168.5, 179.7, and 180.3 mg/g, respectively. The adsorption capacities exceed those of most reported magnetic REE adsorbents in the literature. The adsorption behavior could be fitted to the pseudo-second-order model, intraparticle diffusion model, and Langmuir model. Fe<sub>3</sub>O<sub>4</sub>@PDAPEI exhibited good reusability, with the adsorption capacity remaining above 90% of the initial value after five reuse cycles. In addition, despite the presence of competing ions (i.e., Na<sup>+</sup>, Mg<sup>2+</sup>, and Al<sup>3+</sup>) in model wastewater, the adsorption capacity could be maintained above 100 mg/g for all four REEs. The adsorption mechanism was investigated via density functional theory calculations, zeta potential measurements, and surface force measurements via atomic force microscopy. REEs could adsorb on Fe<sub>3</sub>O<sub>4</sub>@PDAPEI through binding to primary amines and electrostatic interactions. This work presents a highly efficient magnetic adsorbent and evaluates the underlying interaction mechanism from both theoretical and experimental perspectives, shedding light on facile and efficient REE recovery in various engineering processes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 7\",\"pages\":\"2459 - 2470\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3403-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3403-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

废水中稀土元素的吸附对环境保护和资源利用具有重要意义。磁性吸附剂易于分离,但加入磁性颗粒会减少吸附表面积或阻断活性位点,从而降低吸附容量。本文设计了一种由Fe3O4芯层、聚多巴胺(PDA)中间层和聚乙烯亚胺(PEI)外层组成的高效磁性吸附剂(Fe3O4@PDAPEI),用于从低浓度溶液中提取Gd3+、Nd3+、Ho3+和Y3+,吸附量分别为168.3、168.5、179.7和180.3 mg/g。其吸附能力超过了文献中报道的大多数磁性稀土吸附剂。吸附行为符合拟二阶模型、颗粒内扩散模型和Langmuir模型。Fe3O4@PDAPEI具有良好的可重复使用性,经过5次重复使用后,吸附容量仍保持在初始值的90%以上。此外,尽管模型废水中存在竞争离子(即Na+、Mg2+和Al3+),但对四种稀土元素的吸附量均保持在100 mg/g以上。通过密度泛函理论计算、zeta电位测量和原子力显微镜表面力测量来研究吸附机理。稀土可以通过与伯胺的结合和静电相互作用吸附在Fe3O4@PDAPEI上。本研究提出了一种高效的磁性吸附剂,并从理论和实验的角度评估了其潜在的相互作用机制,为在各种工程过程中轻松有效地回收稀土元素提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly efficient recovery of light, medium and heavy rare earth elements using magnetic core-shell nanoparticles

The adsorption of rare earth elements (REEs) from wastewater is vital for environmental protection and resource utilization. Adsorbents with magnetic properties are easy to separate but incorporating magnetic particles can reduce adsorption capacity by decreasing the surface area or blocking active sites. Herein, an efficient magnetic adsorbent (i.e., Fe3O4@PDAPEI), consisting of an Fe3O4 core, a polydopamine (PDA) intermediate layer and a polyethylenimine (PEI) outer layer, was designed to extract Gd3+, Nd3+, Ho3+, and Y3+ from low-concentration solutions with adsorption capacities of 168.3, 168.5, 179.7, and 180.3 mg/g, respectively. The adsorption capacities exceed those of most reported magnetic REE adsorbents in the literature. The adsorption behavior could be fitted to the pseudo-second-order model, intraparticle diffusion model, and Langmuir model. Fe3O4@PDAPEI exhibited good reusability, with the adsorption capacity remaining above 90% of the initial value after five reuse cycles. In addition, despite the presence of competing ions (i.e., Na+, Mg2+, and Al3+) in model wastewater, the adsorption capacity could be maintained above 100 mg/g for all four REEs. The adsorption mechanism was investigated via density functional theory calculations, zeta potential measurements, and surface force measurements via atomic force microscopy. REEs could adsorb on Fe3O4@PDAPEI through binding to primary amines and electrostatic interactions. This work presents a highly efficient magnetic adsorbent and evaluates the underlying interaction mechanism from both theoretical and experimental perspectives, shedding light on facile and efficient REE recovery in various engineering processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信