{"title":"用基本体积法预测短纤维增强聚合物基复合材料的蠕变行为","authors":"J. Rech, B. Möginger, H. C. Ludwig, B. Hausnerova","doi":"10.1007/s11043-025-09801-z","DOIUrl":null,"url":null,"abstract":"<div><p>Creep behavior of short glass fiber reinforced poly(butylene terephthalate) (SFRC PBT) composites was analyzed using plates processed by injection molding and push–pull processing, with fiber contents of 0, 20, and 30 wt%. Tensile test bars were extracted parallelly and perpendicularly to the flow direction to assess short-term mechanical properties, fiber length distribution, and orientation. An elementary volume approach was used to predict the longitudinal and transverse creep compliances, showing that the time dependencies were mainly governed by the PBT matrix. Given the minimal fiber orientation in the thickness direction, a transformation based on RM Jones’ mechanics of composite materials was applied to account for fiber misalignment. This led to the introduction of the unknown shear modulus <span>\\(G_{12}\\)</span>, which was addressed by expressing it in terms of the transverse compliance <span>\\(J_{22}\\)</span> and shear correction factor. Comparison of predicted and measured creep compliances revealed an underestimation of 15–30% parallelly and 5–15% perpendicularly to the flow direction, attributed to imperfect fiber-matrix adhesion. SEM analysis of fracture surfaces indicated different failure behaviors based on the fiber orientation. This suggests that fiber-matrix adhesion is stress-direction dependent. The time range for accurate prediction of composite creep behavior, governed by matrix creep, is defined by the creep time limit, which decreases exponentially with increasing creep stress.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11043-025-09801-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of creep behavior in short fiber reinforced polymer matrix composites using an elementary volume approach\",\"authors\":\"J. Rech, B. Möginger, H. C. Ludwig, B. Hausnerova\",\"doi\":\"10.1007/s11043-025-09801-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Creep behavior of short glass fiber reinforced poly(butylene terephthalate) (SFRC PBT) composites was analyzed using plates processed by injection molding and push–pull processing, with fiber contents of 0, 20, and 30 wt%. Tensile test bars were extracted parallelly and perpendicularly to the flow direction to assess short-term mechanical properties, fiber length distribution, and orientation. An elementary volume approach was used to predict the longitudinal and transverse creep compliances, showing that the time dependencies were mainly governed by the PBT matrix. Given the minimal fiber orientation in the thickness direction, a transformation based on RM Jones’ mechanics of composite materials was applied to account for fiber misalignment. This led to the introduction of the unknown shear modulus <span>\\\\(G_{12}\\\\)</span>, which was addressed by expressing it in terms of the transverse compliance <span>\\\\(J_{22}\\\\)</span> and shear correction factor. Comparison of predicted and measured creep compliances revealed an underestimation of 15–30% parallelly and 5–15% perpendicularly to the flow direction, attributed to imperfect fiber-matrix adhesion. SEM analysis of fracture surfaces indicated different failure behaviors based on the fiber orientation. This suggests that fiber-matrix adhesion is stress-direction dependent. The time range for accurate prediction of composite creep behavior, governed by matrix creep, is defined by the creep time limit, which decreases exponentially with increasing creep stress.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11043-025-09801-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-025-09801-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09801-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
对短玻璃纤维增强聚对苯二甲酸丁二酯(SFRC PBT)复合材料的蠕变行为进行了分析,采用纤维含量分别为0、20和30 wt的注射成型和推挽加工板材%. Tensile test bars were extracted parallelly and perpendicularly to the flow direction to assess short-term mechanical properties, fiber length distribution, and orientation. An elementary volume approach was used to predict the longitudinal and transverse creep compliances, showing that the time dependencies were mainly governed by the PBT matrix. Given the minimal fiber orientation in the thickness direction, a transformation based on RM Jones’ mechanics of composite materials was applied to account for fiber misalignment. This led to the introduction of the unknown shear modulus \(G_{12}\), which was addressed by expressing it in terms of the transverse compliance \(J_{22}\) and shear correction factor. Comparison of predicted and measured creep compliances revealed an underestimation of 15–30% parallelly and 5–15% perpendicularly to the flow direction, attributed to imperfect fiber-matrix adhesion. SEM analysis of fracture surfaces indicated different failure behaviors based on the fiber orientation. This suggests that fiber-matrix adhesion is stress-direction dependent. The time range for accurate prediction of composite creep behavior, governed by matrix creep, is defined by the creep time limit, which decreases exponentially with increasing creep stress.
Prediction of creep behavior in short fiber reinforced polymer matrix composites using an elementary volume approach
Creep behavior of short glass fiber reinforced poly(butylene terephthalate) (SFRC PBT) composites was analyzed using plates processed by injection molding and push–pull processing, with fiber contents of 0, 20, and 30 wt%. Tensile test bars were extracted parallelly and perpendicularly to the flow direction to assess short-term mechanical properties, fiber length distribution, and orientation. An elementary volume approach was used to predict the longitudinal and transverse creep compliances, showing that the time dependencies were mainly governed by the PBT matrix. Given the minimal fiber orientation in the thickness direction, a transformation based on RM Jones’ mechanics of composite materials was applied to account for fiber misalignment. This led to the introduction of the unknown shear modulus \(G_{12}\), which was addressed by expressing it in terms of the transverse compliance \(J_{22}\) and shear correction factor. Comparison of predicted and measured creep compliances revealed an underestimation of 15–30% parallelly and 5–15% perpendicularly to the flow direction, attributed to imperfect fiber-matrix adhesion. SEM analysis of fracture surfaces indicated different failure behaviors based on the fiber orientation. This suggests that fiber-matrix adhesion is stress-direction dependent. The time range for accurate prediction of composite creep behavior, governed by matrix creep, is defined by the creep time limit, which decreases exponentially with increasing creep stress.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.