ZnONR/n-MoS2/i-MoS2/p-Si光伏电池的压电性能增强

IF 2.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
K. Rathnakannan, R. Parasuraman
{"title":"ZnONR/n-MoS2/i-MoS2/p-Si光伏电池的压电性能增强","authors":"K. Rathnakannan,&nbsp;R. Parasuraman","doi":"10.1007/s10825-025-02347-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the impact of the piezotronic effect on the performance of a ZnO nanorod/n-MoS<sub>2</sub>/i-MoS<sub>2</sub>/p-Si photovoltaic nano-heterostructure for achieving high-efficiency energy harvesting. We aimed to optimize the thickness of each layer in the piezo-photoelectric physical model to improve the J–V characteristics and energy band alignment. We found that a thickness of 5 nm for n-MoS<sub>2</sub> and 100 nm for ZnO NR, and the doping concentration led to the highest photoconversion efficiency of 28.08%. This configuration generated piezocharges at the ZnO/MoS<sub>2</sub> interfaces under applied strain ranging from − 1% to 1. This structure has potential for developing high-efficiency solar cells.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezotronics-enabled performance enhancement in ZnONR/n-MoS2/i-MoS2/p-Si photovoltaics\",\"authors\":\"K. Rathnakannan,&nbsp;R. Parasuraman\",\"doi\":\"10.1007/s10825-025-02347-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the impact of the piezotronic effect on the performance of a ZnO nanorod/n-MoS<sub>2</sub>/i-MoS<sub>2</sub>/p-Si photovoltaic nano-heterostructure for achieving high-efficiency energy harvesting. We aimed to optimize the thickness of each layer in the piezo-photoelectric physical model to improve the J–V characteristics and energy band alignment. We found that a thickness of 5 nm for n-MoS<sub>2</sub> and 100 nm for ZnO NR, and the doping concentration led to the highest photoconversion efficiency of 28.08%. This configuration generated piezocharges at the ZnO/MoS<sub>2</sub> interfaces under applied strain ranging from − 1% to 1. This structure has potential for developing high-efficiency solar cells.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-025-02347-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02347-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了压电效应对ZnO纳米棒/n-MoS2/i-MoS2/p-Si光伏纳米异质结构实现高效能量收集性能的影响。我们的目标是优化压电-光电物理模型中各层的厚度,以改善J-V特性和能带对准。我们发现,当n-MoS2的厚度为5 nm, ZnO NR的厚度为100 nm时,掺杂浓度达到最高的28.08%的光转换效率。这种结构在施加的应变范围为- 1%至1的情况下在ZnO/MoS2界面产生压电。这种结构具有开发高效太阳能电池的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Piezotronics-enabled performance enhancement in ZnONR/n-MoS2/i-MoS2/p-Si photovoltaics

Piezotronics-enabled performance enhancement in ZnONR/n-MoS2/i-MoS2/p-Si photovoltaics

This study explores the impact of the piezotronic effect on the performance of a ZnO nanorod/n-MoS2/i-MoS2/p-Si photovoltaic nano-heterostructure for achieving high-efficiency energy harvesting. We aimed to optimize the thickness of each layer in the piezo-photoelectric physical model to improve the J–V characteristics and energy band alignment. We found that a thickness of 5 nm for n-MoS2 and 100 nm for ZnO NR, and the doping concentration led to the highest photoconversion efficiency of 28.08%. This configuration generated piezocharges at the ZnO/MoS2 interfaces under applied strain ranging from − 1% to 1. This structure has potential for developing high-efficiency solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信