环加筋钛合金汽缸断裂失效评价

IF 2.5 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junfeng Zhang, Yinghui Liu, Xiaoming Liu, Bowen Zhang
{"title":"环加筋钛合金汽缸断裂失效评价","authors":"Junfeng Zhang,&nbsp;Yinghui Liu,&nbsp;Xiaoming Liu,&nbsp;Bowen Zhang","doi":"10.1007/s10704-025-00878-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel failure evaluation method for fracture instability analysis of ring-stiffened titanium alloy cylinders under hydrostatic pressure. The quantification of fracture instability behavior for a titanium alloy cylinder remains unclear. In this work, we propose a post-buckling mode analysis for fracture instability, considering the relationship between plastic strain and structural deformation. Further, a novel fracture failure criterion involving material properties and structural parameters is established, bringing the proposal of a structural failure range evaluation method for titanium alloy cylinders. By incorporating the strain rate effect into the constitutive model of the two-phase <span>\\(\\alpha +\\beta \\)</span> titanium alloy Ti-6Al-4 V, we developed a dynamic finite element model for studying the fracture instability of the titanium alloy cylinder. The theoretical results and finite element simulation results are finally verified by the collapse experiment of a titanium alloy cylinder. The findings can provide a fundamental basis for designing and service safety evaluation of titanium alloy cylinders.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture failure assessment of ring-stiffened titanium alloy cylinder\",\"authors\":\"Junfeng Zhang,&nbsp;Yinghui Liu,&nbsp;Xiaoming Liu,&nbsp;Bowen Zhang\",\"doi\":\"10.1007/s10704-025-00878-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel failure evaluation method for fracture instability analysis of ring-stiffened titanium alloy cylinders under hydrostatic pressure. The quantification of fracture instability behavior for a titanium alloy cylinder remains unclear. In this work, we propose a post-buckling mode analysis for fracture instability, considering the relationship between plastic strain and structural deformation. Further, a novel fracture failure criterion involving material properties and structural parameters is established, bringing the proposal of a structural failure range evaluation method for titanium alloy cylinders. By incorporating the strain rate effect into the constitutive model of the two-phase <span>\\\\(\\\\alpha +\\\\beta \\\\)</span> titanium alloy Ti-6Al-4 V, we developed a dynamic finite element model for studying the fracture instability of the titanium alloy cylinder. The theoretical results and finite element simulation results are finally verified by the collapse experiment of a titanium alloy cylinder. The findings can provide a fundamental basis for designing and service safety evaluation of titanium alloy cylinders.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-025-00878-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00878-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于静水压力下环加筋钛合金汽缸断裂失稳分析的失效评估方法。钛合金圆柱体断裂失稳行为的量化尚不清楚。在这项工作中,我们提出了一种考虑塑性应变和结构变形之间关系的断裂失稳后屈曲模式分析。在此基础上,建立了考虑材料性能和结构参数的新型断裂失效准则,提出了钛合金汽缸结构失效范围评估方法。将应变率效应引入到\(\alpha +\beta \)两相钛合金ti - 6al - 4v的本构模型中,建立了钛合金圆柱体断裂失稳的动态有限元模型。最后通过钛合金圆筒的坍塌实验验证了理论结果和有限元模拟结果。研究结果可为钛合金汽缸的设计和使用安全性评价提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fracture failure assessment of ring-stiffened titanium alloy cylinder

This paper presents a novel failure evaluation method for fracture instability analysis of ring-stiffened titanium alloy cylinders under hydrostatic pressure. The quantification of fracture instability behavior for a titanium alloy cylinder remains unclear. In this work, we propose a post-buckling mode analysis for fracture instability, considering the relationship between plastic strain and structural deformation. Further, a novel fracture failure criterion involving material properties and structural parameters is established, bringing the proposal of a structural failure range evaluation method for titanium alloy cylinders. By incorporating the strain rate effect into the constitutive model of the two-phase \(\alpha +\beta \) titanium alloy Ti-6Al-4 V, we developed a dynamic finite element model for studying the fracture instability of the titanium alloy cylinder. The theoretical results and finite element simulation results are finally verified by the collapse experiment of a titanium alloy cylinder. The findings can provide a fundamental basis for designing and service safety evaluation of titanium alloy cylinders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信