采用多尺度氮化硼-氧化铝-纳米金刚石填料的聚乙烯醇复合材料静电工程热界面材料的各向异性热导率

IF 21.8 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Sohyung Jiong, Jiheon Kim, Kyungmin Kim, Yong Choi, Jeongwoo Lee, Jaemin Lee, Dowon Noh, Jisoo Park, Wonjoon Choi
{"title":"采用多尺度氮化硼-氧化铝-纳米金刚石填料的聚乙烯醇复合材料静电工程热界面材料的各向异性热导率","authors":"Sohyung Jiong,&nbsp;Jiheon Kim,&nbsp;Kyungmin Kim,&nbsp;Yong Choi,&nbsp;Jeongwoo Lee,&nbsp;Jaemin Lee,&nbsp;Dowon Noh,&nbsp;Jisoo Park,&nbsp;Wonjoon Choi","doi":"10.1007/s42114-025-01409-8","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal interface materials (TIMs) are essential for managing heat in high-power electronic devices, yet developing advanced TIMs faces challenges due to interfacial thermal resistance between fillers or at filler-matrix boundaries. Furthermore, the anisotropic nature of micro-nanostructured fillers like 1D/2D materials limits the optimal tuning of in-plane and through-plane thermal conductivities. Herein, we introduce electrostatically engineered TIMs using multiscale hybrid fillers—modified boron nitride (m-BN)-alumina (Al₂O₃), and m-BN-nanodiamond (ND)—dispersed in polyvinyl alcohol (PVA) to manipulate m-BN alignment and reduce interfacial resistance, tailoring anisotropic thermal conductivities. In the multiscale design, m-BN layers (~ 100 nm) surround spherical Al₂O₃ particles (microscale) to disrupt planar alignment, while ND particles (5–10 nm) bridge gaps, enhancing alignment and interfacial contact. The optimal TIMs achieve a 54% reduction in anisotropy index and a 192% improvement in through-plane thermal conductivity compared to m-BN-only TIMs. The composites exhibit a 37% increase in strength and a 234% improvement in elongation, alongside low dielectric constant and loss factor, fulfilling multifunctional requirements such as mechanical integrity and electrical insulation. LED cooling components using the TIMs lower operating temperatures, confirming their outstanding performance. This hybrid design offers a versatile framework for multifunctional TIMs, extending to other 2D materials like graphene, MXene, and metal dichalcogenides.</p><h3>Graphical Abstract</h3><p>Electrostatically engineered thermal interface materials (TIMs) using multiscale hybrid fillers—modified boron nitride (m-BN), alumina (Al₂O₃), and nanodiamond (ND)—dispersed in polyvinyl alcohol (PVA) composites are devised to tailor the desired anisotropic thermal conductivities. The optimal TIMs achieve a 54% reduction in anisotropy index and a 192% improvement in through-plane thermal conductivity compared to m-BN-only TIMs. The composites exhibit a 37% increase in strength and 234% improvement in elongation, alongside low dielectric constant and loss factor, fulfilling multifunctional requirements such as mechanical integrity and electrical insulation.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 4","pages":""},"PeriodicalIF":21.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01409-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrostatically engineered thermal interface materials with multiscale boron nitride-alumina-nanodiamond fillers in polyvinyl alcohol composites for tailored anisotropic thermal conductivities\",\"authors\":\"Sohyung Jiong,&nbsp;Jiheon Kim,&nbsp;Kyungmin Kim,&nbsp;Yong Choi,&nbsp;Jeongwoo Lee,&nbsp;Jaemin Lee,&nbsp;Dowon Noh,&nbsp;Jisoo Park,&nbsp;Wonjoon Choi\",\"doi\":\"10.1007/s42114-025-01409-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal interface materials (TIMs) are essential for managing heat in high-power electronic devices, yet developing advanced TIMs faces challenges due to interfacial thermal resistance between fillers or at filler-matrix boundaries. Furthermore, the anisotropic nature of micro-nanostructured fillers like 1D/2D materials limits the optimal tuning of in-plane and through-plane thermal conductivities. Herein, we introduce electrostatically engineered TIMs using multiscale hybrid fillers—modified boron nitride (m-BN)-alumina (Al₂O₃), and m-BN-nanodiamond (ND)—dispersed in polyvinyl alcohol (PVA) to manipulate m-BN alignment and reduce interfacial resistance, tailoring anisotropic thermal conductivities. In the multiscale design, m-BN layers (~ 100 nm) surround spherical Al₂O₃ particles (microscale) to disrupt planar alignment, while ND particles (5–10 nm) bridge gaps, enhancing alignment and interfacial contact. The optimal TIMs achieve a 54% reduction in anisotropy index and a 192% improvement in through-plane thermal conductivity compared to m-BN-only TIMs. The composites exhibit a 37% increase in strength and a 234% improvement in elongation, alongside low dielectric constant and loss factor, fulfilling multifunctional requirements such as mechanical integrity and electrical insulation. LED cooling components using the TIMs lower operating temperatures, confirming their outstanding performance. This hybrid design offers a versatile framework for multifunctional TIMs, extending to other 2D materials like graphene, MXene, and metal dichalcogenides.</p><h3>Graphical Abstract</h3><p>Electrostatically engineered thermal interface materials (TIMs) using multiscale hybrid fillers—modified boron nitride (m-BN), alumina (Al₂O₃), and nanodiamond (ND)—dispersed in polyvinyl alcohol (PVA) composites are devised to tailor the desired anisotropic thermal conductivities. The optimal TIMs achieve a 54% reduction in anisotropy index and a 192% improvement in through-plane thermal conductivity compared to m-BN-only TIMs. The composites exhibit a 37% increase in strength and 234% improvement in elongation, alongside low dielectric constant and loss factor, fulfilling multifunctional requirements such as mechanical integrity and electrical insulation.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":21.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-025-01409-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-025-01409-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01409-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

热界面材料(TIMs)对于高功率电子器件的热管理至关重要,但由于填料之间或填料-基质边界处的界面热阻,开发先进的TIMs面临着挑战。此外,一维/二维材料等微纳米结构填料的各向异性限制了平面内和平面内导热系数的优化调整。本文采用多尺度杂化填料——改性氮化硼(m-BN)-氧化铝(Al₂O₃)和m-BN-纳米金刚石(ND)——分散在聚乙烯醇(PVA)中,引入静电工程TIMs,以控制m-BN取向,降低界面阻力,调整各向异性导热系数。在多尺度设计中,m-BN层(~ 100 nm)围绕球形Al₂O₃颗粒(微尺度)破坏平面排列,而ND颗粒(5-10 nm)桥接间隙,增强排列和界面接触。与仅使用m- bn的TIMs相比,最佳TIMs的各向异性指数降低了54%,通过面导热系数提高了192%。复合材料的强度提高37%,伸长率提高234%,同时具有较低的介电常数和损耗系数,满足机械完整性和电气绝缘等多功能要求。使用TIMs的LED冷却组件降低了工作温度,证实了其出色的性能。这种混合设计为多功能TIMs提供了一个通用的框架,扩展到其他二维材料,如石墨烯、MXene和金属二硫族化合物。摘要采用多尺度杂化填料——改性氮化硼(m-BN)、氧化铝(Al₂O₃)和纳米金刚石(ND)分散在聚乙烯醇(PVA)复合材料中,设计了静电工程热界面材料(TIMs),以定制所需的各向异性导热系数。与仅使用m- bn的TIMs相比,最佳TIMs的各向异性指数降低了54%,通过面导热系数提高了192%。复合材料的强度提高37%,伸长率提高234%,同时具有较低的介电常数和损耗系数,满足机械完整性和电气绝缘等多功能要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrostatically engineered thermal interface materials with multiscale boron nitride-alumina-nanodiamond fillers in polyvinyl alcohol composites for tailored anisotropic thermal conductivities

Thermal interface materials (TIMs) are essential for managing heat in high-power electronic devices, yet developing advanced TIMs faces challenges due to interfacial thermal resistance between fillers or at filler-matrix boundaries. Furthermore, the anisotropic nature of micro-nanostructured fillers like 1D/2D materials limits the optimal tuning of in-plane and through-plane thermal conductivities. Herein, we introduce electrostatically engineered TIMs using multiscale hybrid fillers—modified boron nitride (m-BN)-alumina (Al₂O₃), and m-BN-nanodiamond (ND)—dispersed in polyvinyl alcohol (PVA) to manipulate m-BN alignment and reduce interfacial resistance, tailoring anisotropic thermal conductivities. In the multiscale design, m-BN layers (~ 100 nm) surround spherical Al₂O₃ particles (microscale) to disrupt planar alignment, while ND particles (5–10 nm) bridge gaps, enhancing alignment and interfacial contact. The optimal TIMs achieve a 54% reduction in anisotropy index and a 192% improvement in through-plane thermal conductivity compared to m-BN-only TIMs. The composites exhibit a 37% increase in strength and a 234% improvement in elongation, alongside low dielectric constant and loss factor, fulfilling multifunctional requirements such as mechanical integrity and electrical insulation. LED cooling components using the TIMs lower operating temperatures, confirming their outstanding performance. This hybrid design offers a versatile framework for multifunctional TIMs, extending to other 2D materials like graphene, MXene, and metal dichalcogenides.

Graphical Abstract

Electrostatically engineered thermal interface materials (TIMs) using multiscale hybrid fillers—modified boron nitride (m-BN), alumina (Al₂O₃), and nanodiamond (ND)—dispersed in polyvinyl alcohol (PVA) composites are devised to tailor the desired anisotropic thermal conductivities. The optimal TIMs achieve a 54% reduction in anisotropy index and a 192% improvement in through-plane thermal conductivity compared to m-BN-only TIMs. The composites exhibit a 37% increase in strength and 234% improvement in elongation, alongside low dielectric constant and loss factor, fulfilling multifunctional requirements such as mechanical integrity and electrical insulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信