{"title":"气候变化和水生生态系统污染物对环境-人类健康的交互影响","authors":"Kaifeng Yu, Sanjeeb Mohapatra, Yihan Chen, Peng Jiang, Xuneng Tong","doi":"10.1007/s40726-025-00379-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of the Review</h3><p>Climate change is intensifying the pressures on aquatic ecosystems by altering the dynamics of contaminants, with cascading effects on ecological and human health. This review synthesizes recent evidence on how rising temperatures, altered precipitation patterns, and extreme weather events influence chemical and microbial contaminant dynamics in aquatic environments.</p><h3>Recent Findings</h3><p>Key findings reveal that elevated temperatures enhance phosphorus pollution and algal blooms, increase heavy metal release from sediments, and promote the mobilization of organic pollutants. Concurrently, climate change exacerbates microbial contamination by facilitating the spread of waterborne microbial contaminants, especially posing more pressure to antimicrobial resistance-related contaminants through temperature-driven horizontal gene transfer and extreme precipitation events. Complex interactions between chemical and microbial contaminants like heavy metals co-selecting for antibiotic resistance further amplify risks. The compounded effects of climate change and contaminants threaten water quality, ecosystem resilience, and public health, particularly through increased toxicant exposure via seafood and waterborne disease outbreaks. Despite growing recognition of these interactions, critical gaps remain in understanding their synergistic mechanisms, especially in data-scarce regions.</p><h3>Summary</h3><p>This review highlights the urgent need for integrated monitoring, predictive modeling, and adaptive policies under a One Health framework to mitigate the multifaceted impacts of climate-driven contamination. Future research should prioritize real-world assessments of temperature effects, urban overflow dynamics during extreme weather, and the socio-behavioral dimensions of contaminant spread to inform effective mitigation strategies.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Effects of Climate Change and Contaminants in Aquatic Ecosystems on Environmental-Human Health\",\"authors\":\"Kaifeng Yu, Sanjeeb Mohapatra, Yihan Chen, Peng Jiang, Xuneng Tong\",\"doi\":\"10.1007/s40726-025-00379-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of the Review</h3><p>Climate change is intensifying the pressures on aquatic ecosystems by altering the dynamics of contaminants, with cascading effects on ecological and human health. This review synthesizes recent evidence on how rising temperatures, altered precipitation patterns, and extreme weather events influence chemical and microbial contaminant dynamics in aquatic environments.</p><h3>Recent Findings</h3><p>Key findings reveal that elevated temperatures enhance phosphorus pollution and algal blooms, increase heavy metal release from sediments, and promote the mobilization of organic pollutants. Concurrently, climate change exacerbates microbial contamination by facilitating the spread of waterborne microbial contaminants, especially posing more pressure to antimicrobial resistance-related contaminants through temperature-driven horizontal gene transfer and extreme precipitation events. Complex interactions between chemical and microbial contaminants like heavy metals co-selecting for antibiotic resistance further amplify risks. The compounded effects of climate change and contaminants threaten water quality, ecosystem resilience, and public health, particularly through increased toxicant exposure via seafood and waterborne disease outbreaks. Despite growing recognition of these interactions, critical gaps remain in understanding their synergistic mechanisms, especially in data-scarce regions.</p><h3>Summary</h3><p>This review highlights the urgent need for integrated monitoring, predictive modeling, and adaptive policies under a One Health framework to mitigate the multifaceted impacts of climate-driven contamination. Future research should prioritize real-world assessments of temperature effects, urban overflow dynamics during extreme weather, and the socio-behavioral dimensions of contaminant spread to inform effective mitigation strategies.</p></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-025-00379-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00379-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Interactive Effects of Climate Change and Contaminants in Aquatic Ecosystems on Environmental-Human Health
Purpose of the Review
Climate change is intensifying the pressures on aquatic ecosystems by altering the dynamics of contaminants, with cascading effects on ecological and human health. This review synthesizes recent evidence on how rising temperatures, altered precipitation patterns, and extreme weather events influence chemical and microbial contaminant dynamics in aquatic environments.
Recent Findings
Key findings reveal that elevated temperatures enhance phosphorus pollution and algal blooms, increase heavy metal release from sediments, and promote the mobilization of organic pollutants. Concurrently, climate change exacerbates microbial contamination by facilitating the spread of waterborne microbial contaminants, especially posing more pressure to antimicrobial resistance-related contaminants through temperature-driven horizontal gene transfer and extreme precipitation events. Complex interactions between chemical and microbial contaminants like heavy metals co-selecting for antibiotic resistance further amplify risks. The compounded effects of climate change and contaminants threaten water quality, ecosystem resilience, and public health, particularly through increased toxicant exposure via seafood and waterborne disease outbreaks. Despite growing recognition of these interactions, critical gaps remain in understanding their synergistic mechanisms, especially in data-scarce regions.
Summary
This review highlights the urgent need for integrated monitoring, predictive modeling, and adaptive policies under a One Health framework to mitigate the multifaceted impacts of climate-driven contamination. Future research should prioritize real-world assessments of temperature effects, urban overflow dynamics during extreme weather, and the socio-behavioral dimensions of contaminant spread to inform effective mitigation strategies.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.