自旋-1/2算符精确映射到存在于两个带中的旋正则费米算符

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Zsolt Gulacsi
{"title":"自旋-1/2算符精确映射到存在于两个带中的旋正则费米算符","authors":"Zsolt Gulacsi","doi":"10.1140/epjb/s10051-025-00984-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, it has been shown that the quantum spin–1/2 spin operators can be exactly transformed not only in spinless, but also in spinful canonical Fermi operators in 1D [1] and 2D [2] as well. In this paper, using the same technique based on an extended Jordan–Wigner transformation, we show in 1D that the quantum spin-1/2 operators can be exactly transformed also in spinful canonical Fermi operators of spin-1/2 fermions that are belong to two bands.</p></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-00984-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Spin-1/2 operators exactly mapped to spinful canonical Fermi operators present in two bands\",\"authors\":\"Zsolt Gulacsi\",\"doi\":\"10.1140/epjb/s10051-025-00984-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, it has been shown that the quantum spin–1/2 spin operators can be exactly transformed not only in spinless, but also in spinful canonical Fermi operators in 1D [1] and 2D [2] as well. In this paper, using the same technique based on an extended Jordan–Wigner transformation, we show in 1D that the quantum spin-1/2 operators can be exactly transformed also in spinful canonical Fermi operators of spin-1/2 fermions that are belong to two bands.</p></div>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 7\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-00984-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-00984-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00984-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

最近,量子自旋- 1/2自旋算符不仅可以在无自旋中精确变换,而且可以在一维[1]和二维[2]中精确变换。在本文中,使用基于扩展Jordan-Wigner变换的相同技术,我们证明了在一维中,量子自旋-1/2算符也可以在属于两个带的自旋-1/2费米子的自旋正则费米算符中精确变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin-1/2 operators exactly mapped to spinful canonical Fermi operators present in two bands

Recently, it has been shown that the quantum spin–1/2 spin operators can be exactly transformed not only in spinless, but also in spinful canonical Fermi operators in 1D [1] and 2D [2] as well. In this paper, using the same technique based on an extended Jordan–Wigner transformation, we show in 1D that the quantum spin-1/2 operators can be exactly transformed also in spinful canonical Fermi operators of spin-1/2 fermions that are belong to two bands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信