{"title":"大混凝土试件的直接拉伸试验。第2部分:通过声发射和数字成像对混凝土微力学断裂的洞察","authors":"R. Yogesh, J. M. Chandra Kishen","doi":"10.1007/s10704-025-00873-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the first part of the companion paper, experimental procedures for conducting direct tension tests on large concrete specimens were discussed, together with the fracture properties and size effects. In this paper, we delve into the details of micromechanisms of fracture and failure in concrete under direct tension using digital imaging and acoustic emission (AE) techniques. The surface cracking characteristics are obtained from imaging, while the evolution of microcracks in the fracture process zone (FPZ) are predicted through AE events and energy. The differences in microcrack initiation, and their coalescence to form macrocracks for different sizes of specimens are explained, and the size of the FPZ is estimated. It is concluded that in large-size specimens, the size of FPZ is relatively smaller with the formation of microcracks, their coalescence to form macrocracks, and the propagation of the final crack taking place almost simultaneously, leading to a brittle failure.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct tension test of large concrete specimens - Part II: Insights into micromechanical fracture of concrete through acoustic emission and digital imaging\",\"authors\":\"R. Yogesh, J. M. Chandra Kishen\",\"doi\":\"10.1007/s10704-025-00873-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the first part of the companion paper, experimental procedures for conducting direct tension tests on large concrete specimens were discussed, together with the fracture properties and size effects. In this paper, we delve into the details of micromechanisms of fracture and failure in concrete under direct tension using digital imaging and acoustic emission (AE) techniques. The surface cracking characteristics are obtained from imaging, while the evolution of microcracks in the fracture process zone (FPZ) are predicted through AE events and energy. The differences in microcrack initiation, and their coalescence to form macrocracks for different sizes of specimens are explained, and the size of the FPZ is estimated. It is concluded that in large-size specimens, the size of FPZ is relatively smaller with the formation of microcracks, their coalescence to form macrocracks, and the propagation of the final crack taking place almost simultaneously, leading to a brittle failure.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-025-00873-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00873-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct tension test of large concrete specimens - Part II: Insights into micromechanical fracture of concrete through acoustic emission and digital imaging
In the first part of the companion paper, experimental procedures for conducting direct tension tests on large concrete specimens were discussed, together with the fracture properties and size effects. In this paper, we delve into the details of micromechanisms of fracture and failure in concrete under direct tension using digital imaging and acoustic emission (AE) techniques. The surface cracking characteristics are obtained from imaging, while the evolution of microcracks in the fracture process zone (FPZ) are predicted through AE events and energy. The differences in microcrack initiation, and their coalescence to form macrocracks for different sizes of specimens are explained, and the size of the FPZ is estimated. It is concluded that in large-size specimens, the size of FPZ is relatively smaller with the formation of microcracks, their coalescence to form macrocracks, and the propagation of the final crack taking place almost simultaneously, leading to a brittle failure.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.