Muskan Soni, Chinnasamy Ragavendran, Mohamed Imath, Salim Manoharadas, Ismini Nakouti
{"title":"鞣花酸包裹金纳米颗粒:KB细胞的抗菌、抗氧化、抗炎和细胞毒性作用的评价","authors":"Muskan Soni, Chinnasamy Ragavendran, Mohamed Imath, Salim Manoharadas, Ismini Nakouti","doi":"10.1007/s10876-025-02852-9","DOIUrl":null,"url":null,"abstract":"<div><p>The green synthesis of metal nanoparticles using plant-based molecules is gaining attention for its potential in biomedical applications. The aim of present study the eco-friendly synthesis of gold nanoparticles (AuNPs) using ellagic acid, a natural antioxidant, which acted as both reducing and capping agent. The successful synthesized ellagic acid-coated AuNPs (EA-AuNPs) was indicated by a colour change to dark brown and confirmed through UV-visible spectroscopy with a peak at 587.5 nm. Transmission electron microscopy (TEM) revealed long rod-shaped nanoparticles ranging from 50 to 70 nm in size, and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Au, C, Cl, and N elements. Zeta potential analysis showed a stable surface charge of -17.7 mV. EA-AuNPs exhibited strong antibacterial activity, including a 37.26 ± 0.9 mm inhibition zone against <i>Klebsiella pneumoniae</i> at 100 µg/mL and minimum inhibitory concentration (MIC) values below 1 µg/mL against <i>Staphylococcus aureus</i>. The nanoparticles also demonstrated potent antioxidant activity, achieving 91% and 89% radical scavenging in DPPH and ABTS assays, respectively. Anti-inflammatory testing showed 78% membrane stabilization at 200 µg/mL. Moreover, cytotoxicity studies revealed that EA-AuNPs had an IC₅₀ of 59.58 µg/mL against oral epidermoid carcinoma (KB) cells. In-silico analysis also demonstrated a promising binding affinity of -7.3 kcal/mol with <i>Candida albicans</i>, suggesting notable antifungal properties. The present study highlights the multi-functional therapeutic potential of EA-AuNPs in oral health care, offering a biocompatible approach to combat microbial infections, oxidative stress, inflammation, and oral cancer. The integration of both in-vitro and in-silico results supports their future application in dental and oral medicine.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ellagic Acid-Wrapped Gold Nanoparticles: Evaluation of Antimicrobial, Antioxidant, Anti-Inflammatory, and Cytotoxicity Effects of KB Cells\",\"authors\":\"Muskan Soni, Chinnasamy Ragavendran, Mohamed Imath, Salim Manoharadas, Ismini Nakouti\",\"doi\":\"10.1007/s10876-025-02852-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The green synthesis of metal nanoparticles using plant-based molecules is gaining attention for its potential in biomedical applications. The aim of present study the eco-friendly synthesis of gold nanoparticles (AuNPs) using ellagic acid, a natural antioxidant, which acted as both reducing and capping agent. The successful synthesized ellagic acid-coated AuNPs (EA-AuNPs) was indicated by a colour change to dark brown and confirmed through UV-visible spectroscopy with a peak at 587.5 nm. Transmission electron microscopy (TEM) revealed long rod-shaped nanoparticles ranging from 50 to 70 nm in size, and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Au, C, Cl, and N elements. Zeta potential analysis showed a stable surface charge of -17.7 mV. EA-AuNPs exhibited strong antibacterial activity, including a 37.26 ± 0.9 mm inhibition zone against <i>Klebsiella pneumoniae</i> at 100 µg/mL and minimum inhibitory concentration (MIC) values below 1 µg/mL against <i>Staphylococcus aureus</i>. The nanoparticles also demonstrated potent antioxidant activity, achieving 91% and 89% radical scavenging in DPPH and ABTS assays, respectively. Anti-inflammatory testing showed 78% membrane stabilization at 200 µg/mL. Moreover, cytotoxicity studies revealed that EA-AuNPs had an IC₅₀ of 59.58 µg/mL against oral epidermoid carcinoma (KB) cells. In-silico analysis also demonstrated a promising binding affinity of -7.3 kcal/mol with <i>Candida albicans</i>, suggesting notable antifungal properties. The present study highlights the multi-functional therapeutic potential of EA-AuNPs in oral health care, offering a biocompatible approach to combat microbial infections, oxidative stress, inflammation, and oral cancer. The integration of both in-vitro and in-silico results supports their future application in dental and oral medicine.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02852-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02852-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Ellagic Acid-Wrapped Gold Nanoparticles: Evaluation of Antimicrobial, Antioxidant, Anti-Inflammatory, and Cytotoxicity Effects of KB Cells
The green synthesis of metal nanoparticles using plant-based molecules is gaining attention for its potential in biomedical applications. The aim of present study the eco-friendly synthesis of gold nanoparticles (AuNPs) using ellagic acid, a natural antioxidant, which acted as both reducing and capping agent. The successful synthesized ellagic acid-coated AuNPs (EA-AuNPs) was indicated by a colour change to dark brown and confirmed through UV-visible spectroscopy with a peak at 587.5 nm. Transmission electron microscopy (TEM) revealed long rod-shaped nanoparticles ranging from 50 to 70 nm in size, and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Au, C, Cl, and N elements. Zeta potential analysis showed a stable surface charge of -17.7 mV. EA-AuNPs exhibited strong antibacterial activity, including a 37.26 ± 0.9 mm inhibition zone against Klebsiella pneumoniae at 100 µg/mL and minimum inhibitory concentration (MIC) values below 1 µg/mL against Staphylococcus aureus. The nanoparticles also demonstrated potent antioxidant activity, achieving 91% and 89% radical scavenging in DPPH and ABTS assays, respectively. Anti-inflammatory testing showed 78% membrane stabilization at 200 µg/mL. Moreover, cytotoxicity studies revealed that EA-AuNPs had an IC₅₀ of 59.58 µg/mL against oral epidermoid carcinoma (KB) cells. In-silico analysis also demonstrated a promising binding affinity of -7.3 kcal/mol with Candida albicans, suggesting notable antifungal properties. The present study highlights the multi-functional therapeutic potential of EA-AuNPs in oral health care, offering a biocompatible approach to combat microbial infections, oxidative stress, inflammation, and oral cancer. The integration of both in-vitro and in-silico results supports their future application in dental and oral medicine.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.