氮化硼纳米材料在环境修复、能源和传感方面的研究进展

IF 20.4 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abhishek Sharma, Charu Juneja, Sukdeb Pal
{"title":"氮化硼纳米材料在环境修复、能源和传感方面的研究进展","authors":"Abhishek Sharma,&nbsp;Charu Juneja,&nbsp;Sukdeb Pal","doi":"10.1007/s10311-025-01852-5","DOIUrl":null,"url":null,"abstract":"<div><p>Current issues of pollution, energy shortage, and pollutant detection are calling for the development of advanced materials. Here, we review boron nitride nanomaterials with focus on synthesis, functionalization, and application in environmental remediation, energy production and storage, and chemical sensing. Nanomaterials synthesis is done by ball‐milling or acoustic cavitation‐assisted exfoliation, hard and soft template methods, calcination, hydro‐ and solvothermal methods, chemical vapor deposition, arc discharge, laser ablation, microwave, carbothermal reduction, coprecipitation, and electrospinning. Water pollutants are removed by adsorption or by photocatalysis using nanomaterials. Nanomaterials are used for hydrogen production and storage, and for sensing of pollutants and gases. Electrospinning and non‐template methods produce materials with high surface areas of 0.7–1,900 m<sup>2</sup>/g, and are cost‐effective and scalable. Pollutant removal efficiency ranges from 15 to 2,989 mg/g for cadmium, 20 to 808 mg/g for copper, 31 to 1,030 mg/g for methylene blue, 60 to 794 mg/g for crystal violet, 75 to 82% for ciprofloxacin, and 80 to 100% for tetracycline. Hydrogen generation reaches 31 mmol/g per hour, and hydrogen storage 7.7 wt%. Sensors sensitivity is 0.08 µM for ascorbic acid, and 0.15 pg/mL for concanavalin A.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 5","pages":"1275 - 1339"},"PeriodicalIF":20.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron nitride nanomaterials for environmental remediation, energy, and sensing: a review\",\"authors\":\"Abhishek Sharma,&nbsp;Charu Juneja,&nbsp;Sukdeb Pal\",\"doi\":\"10.1007/s10311-025-01852-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current issues of pollution, energy shortage, and pollutant detection are calling for the development of advanced materials. Here, we review boron nitride nanomaterials with focus on synthesis, functionalization, and application in environmental remediation, energy production and storage, and chemical sensing. Nanomaterials synthesis is done by ball‐milling or acoustic cavitation‐assisted exfoliation, hard and soft template methods, calcination, hydro‐ and solvothermal methods, chemical vapor deposition, arc discharge, laser ablation, microwave, carbothermal reduction, coprecipitation, and electrospinning. Water pollutants are removed by adsorption or by photocatalysis using nanomaterials. Nanomaterials are used for hydrogen production and storage, and for sensing of pollutants and gases. Electrospinning and non‐template methods produce materials with high surface areas of 0.7–1,900 m<sup>2</sup>/g, and are cost‐effective and scalable. Pollutant removal efficiency ranges from 15 to 2,989 mg/g for cadmium, 20 to 808 mg/g for copper, 31 to 1,030 mg/g for methylene blue, 60 to 794 mg/g for crystal violet, 75 to 82% for ciprofloxacin, and 80 to 100% for tetracycline. Hydrogen generation reaches 31 mmol/g per hour, and hydrogen storage 7.7 wt%. Sensors sensitivity is 0.08 µM for ascorbic acid, and 0.15 pg/mL for concanavalin A.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"23 5\",\"pages\":\"1275 - 1339\"},\"PeriodicalIF\":20.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-025-01852-5\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-025-01852-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当前的污染、能源短缺、污染物检测等问题都要求发展先进材料。本文综述了氮化硼纳米材料的合成、功能化及其在环境修复、能源生产与储存、化学传感等方面的应用。纳米材料的合成是通过球磨或声空化辅助剥离、硬模板法和软模板法、煅烧、水热和溶剂热法、化学气相沉积、电弧放电、激光烧蚀、微波、碳热还原、共沉淀和静电纺丝来完成的。水污染物可以通过纳米材料的吸附或光催化去除。纳米材料被用于氢气的生产和储存,以及污染物和气体的传感。静电纺丝和非模板方法生产的材料具有0.7-1,900 m2/g的高表面积,并且具有成本效益和可扩展性。镉的去除率为15 ~ 2989 mg/g,铜的去除率为20 ~ 808 mg/g,亚甲基蓝的去除率为31 ~ 1030 mg/g,结晶紫的去除率为60 ~ 794 mg/g,环丙沙星的去除率为75 ~ 82%,四环素的去除率为80 ~ 100%。产氢量为31 mmol/g / h,储氢量为7.7 wt%。传感器对抗坏血酸的灵敏度为0.08µM,对刀豆素A的灵敏度为0.15 pg/mL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boron nitride nanomaterials for environmental remediation, energy, and sensing: a review

Current issues of pollution, energy shortage, and pollutant detection are calling for the development of advanced materials. Here, we review boron nitride nanomaterials with focus on synthesis, functionalization, and application in environmental remediation, energy production and storage, and chemical sensing. Nanomaterials synthesis is done by ball‐milling or acoustic cavitation‐assisted exfoliation, hard and soft template methods, calcination, hydro‐ and solvothermal methods, chemical vapor deposition, arc discharge, laser ablation, microwave, carbothermal reduction, coprecipitation, and electrospinning. Water pollutants are removed by adsorption or by photocatalysis using nanomaterials. Nanomaterials are used for hydrogen production and storage, and for sensing of pollutants and gases. Electrospinning and non‐template methods produce materials with high surface areas of 0.7–1,900 m2/g, and are cost‐effective and scalable. Pollutant removal efficiency ranges from 15 to 2,989 mg/g for cadmium, 20 to 808 mg/g for copper, 31 to 1,030 mg/g for methylene blue, 60 to 794 mg/g for crystal violet, 75 to 82% for ciprofloxacin, and 80 to 100% for tetracycline. Hydrogen generation reaches 31 mmol/g per hour, and hydrogen storage 7.7 wt%. Sensors sensitivity is 0.08 µM for ascorbic acid, and 0.15 pg/mL for concanavalin A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信