{"title":"基于Hamilton-Jacobi可达性和乘法q网络的可验证安全q -滤波器","authors":"Jiaxing Li;Hanjiang Hu;Yujie Yang;Changliu Liu","doi":"10.1109/LCSYS.2025.3608213","DOIUrl":null,"url":null,"abstract":"Recent learning-based safety filters have outperformed conventional methods, such as hand-crafted Control Barrier Functions (CBFs), by effectively adapting to complex constraints. However, these learning-based approaches lack formal safety guarantees. In this letter, we introduce a verifiable model-free safety filter based on Hamilton-Jacobi reachability analysis. Our primary contributions include: 1) extending verifiable self-consistency properties for Q value functions, 2) proposing a multiplicative Q-network structure to mitigate zero-sublevel-set shrinkage issues, and 3) developing a verification pipeline capable of soundly verifying these self-consistency properties. Our proposed approach successfully synthesizes formally verified, model-free safety certificates across four standard safe-control benchmarks.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2229-2234"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verifiable Safety Q-Filters Via Hamilton-Jacobi Reachability and Multiplicative Q-Networks\",\"authors\":\"Jiaxing Li;Hanjiang Hu;Yujie Yang;Changliu Liu\",\"doi\":\"10.1109/LCSYS.2025.3608213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent learning-based safety filters have outperformed conventional methods, such as hand-crafted Control Barrier Functions (CBFs), by effectively adapting to complex constraints. However, these learning-based approaches lack formal safety guarantees. In this letter, we introduce a verifiable model-free safety filter based on Hamilton-Jacobi reachability analysis. Our primary contributions include: 1) extending verifiable self-consistency properties for Q value functions, 2) proposing a multiplicative Q-network structure to mitigate zero-sublevel-set shrinkage issues, and 3) developing a verification pipeline capable of soundly verifying these self-consistency properties. Our proposed approach successfully synthesizes formally verified, model-free safety certificates across four standard safe-control benchmarks.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2229-2234\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11157757/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11157757/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Verifiable Safety Q-Filters Via Hamilton-Jacobi Reachability and Multiplicative Q-Networks
Recent learning-based safety filters have outperformed conventional methods, such as hand-crafted Control Barrier Functions (CBFs), by effectively adapting to complex constraints. However, these learning-based approaches lack formal safety guarantees. In this letter, we introduce a verifiable model-free safety filter based on Hamilton-Jacobi reachability analysis. Our primary contributions include: 1) extending verifiable self-consistency properties for Q value functions, 2) proposing a multiplicative Q-network structure to mitigate zero-sublevel-set shrinkage issues, and 3) developing a verification pipeline capable of soundly verifying these self-consistency properties. Our proposed approach successfully synthesizes formally verified, model-free safety certificates across four standard safe-control benchmarks.