基于Hamilton-Jacobi可达性和乘法q网络的可验证安全q -滤波器

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Jiaxing Li;Hanjiang Hu;Yujie Yang;Changliu Liu
{"title":"基于Hamilton-Jacobi可达性和乘法q网络的可验证安全q -滤波器","authors":"Jiaxing Li;Hanjiang Hu;Yujie Yang;Changliu Liu","doi":"10.1109/LCSYS.2025.3608213","DOIUrl":null,"url":null,"abstract":"Recent learning-based safety filters have outperformed conventional methods, such as hand-crafted Control Barrier Functions (CBFs), by effectively adapting to complex constraints. However, these learning-based approaches lack formal safety guarantees. In this letter, we introduce a verifiable model-free safety filter based on Hamilton-Jacobi reachability analysis. Our primary contributions include: 1) extending verifiable self-consistency properties for Q value functions, 2) proposing a multiplicative Q-network structure to mitigate zero-sublevel-set shrinkage issues, and 3) developing a verification pipeline capable of soundly verifying these self-consistency properties. Our proposed approach successfully synthesizes formally verified, model-free safety certificates across four standard safe-control benchmarks.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2229-2234"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verifiable Safety Q-Filters Via Hamilton-Jacobi Reachability and Multiplicative Q-Networks\",\"authors\":\"Jiaxing Li;Hanjiang Hu;Yujie Yang;Changliu Liu\",\"doi\":\"10.1109/LCSYS.2025.3608213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent learning-based safety filters have outperformed conventional methods, such as hand-crafted Control Barrier Functions (CBFs), by effectively adapting to complex constraints. However, these learning-based approaches lack formal safety guarantees. In this letter, we introduce a verifiable model-free safety filter based on Hamilton-Jacobi reachability analysis. Our primary contributions include: 1) extending verifiable self-consistency properties for Q value functions, 2) proposing a multiplicative Q-network structure to mitigate zero-sublevel-set shrinkage issues, and 3) developing a verification pipeline capable of soundly verifying these self-consistency properties. Our proposed approach successfully synthesizes formally verified, model-free safety certificates across four standard safe-control benchmarks.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2229-2234\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11157757/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11157757/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近基于学习的安全滤波器通过有效地适应复杂的约束条件,优于传统的方法,如手工制作的控制屏障函数(cbf)。然而,这些基于学习的方法缺乏正式的安全保证。本文介绍了一种基于Hamilton-Jacobi可达性分析的可验证无模型安全滤波器。我们的主要贡献包括:1)扩展Q值函数的可验证自一致性特性,2)提出一个乘法Q网络结构来缓解零子水平集收缩问题,以及3)开发一个能够有效验证这些自一致性特性的验证管道。我们提出的方法成功地综合了四个标准安全控制基准的正式验证,无模型安全证书。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verifiable Safety Q-Filters Via Hamilton-Jacobi Reachability and Multiplicative Q-Networks
Recent learning-based safety filters have outperformed conventional methods, such as hand-crafted Control Barrier Functions (CBFs), by effectively adapting to complex constraints. However, these learning-based approaches lack formal safety guarantees. In this letter, we introduce a verifiable model-free safety filter based on Hamilton-Jacobi reachability analysis. Our primary contributions include: 1) extending verifiable self-consistency properties for Q value functions, 2) proposing a multiplicative Q-network structure to mitigate zero-sublevel-set shrinkage issues, and 3) developing a verification pipeline capable of soundly verifying these self-consistency properties. Our proposed approach successfully synthesizes formally verified, model-free safety certificates across four standard safe-control benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信