基于人工智能和物理的氧化薄膜晶体管计算方法综述

Eunkyung Koh;Hyeon-Deuk Kim;Rokyeon Kim;Byoungtaek Son;Sang-Hoon Lee;Gyehyun Park;Eui-Cheol Shin;Yongsoo Lee;Insoo Wang
{"title":"基于人工智能和物理的氧化薄膜晶体管计算方法综述","authors":"Eunkyung Koh;Hyeon-Deuk Kim;Rokyeon Kim;Byoungtaek Son;Sang-Hoon Lee;Gyehyun Park;Eui-Cheol Shin;Yongsoo Lee;Insoo Wang","doi":"10.1109/OJID.2025.3610414","DOIUrl":null,"url":null,"abstract":"Oxide thin-film transistors (TFTs) are critical components in modern display technologies due to their high mobility, optical transparency, and low-temperature processability. As the design space expands across material systems, device architectures, and operating conditions, there is a growing demand for computational methods that support reliable and efficient modeling. This review presents a comprehensive overview of AI- and physics-based methods for oxide TFTs, spanning from atomistic material analysis to circuit-level modeling. We discuss atomistic simulations such as density functional theory (DFT) and molecular dynamics (MD) for defect energetics and carrier behavior, technology computer-aided design (TCAD) for device-level electrothermal analysis, and compact models for circuit simulation. The role of artificial intelligence in surrogate modeling, parameter extraction, optimization of materials, device structures, and processes is discussed. By bridging simulation methods across multiple scales, this review provides insights into accelerating the design, and analysis of oxide TFTs.","PeriodicalId":100634,"journal":{"name":"IEEE Open Journal on Immersive Displays","volume":"2 ","pages":"89-95"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11165197","citationCount":"0","resultStr":"{\"title\":\"AI and Physics-Based Computational Methods for Oxide Thin-Film Transistors: A Review\",\"authors\":\"Eunkyung Koh;Hyeon-Deuk Kim;Rokyeon Kim;Byoungtaek Son;Sang-Hoon Lee;Gyehyun Park;Eui-Cheol Shin;Yongsoo Lee;Insoo Wang\",\"doi\":\"10.1109/OJID.2025.3610414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxide thin-film transistors (TFTs) are critical components in modern display technologies due to their high mobility, optical transparency, and low-temperature processability. As the design space expands across material systems, device architectures, and operating conditions, there is a growing demand for computational methods that support reliable and efficient modeling. This review presents a comprehensive overview of AI- and physics-based methods for oxide TFTs, spanning from atomistic material analysis to circuit-level modeling. We discuss atomistic simulations such as density functional theory (DFT) and molecular dynamics (MD) for defect energetics and carrier behavior, technology computer-aided design (TCAD) for device-level electrothermal analysis, and compact models for circuit simulation. The role of artificial intelligence in surrogate modeling, parameter extraction, optimization of materials, device structures, and processes is discussed. By bridging simulation methods across multiple scales, this review provides insights into accelerating the design, and analysis of oxide TFTs.\",\"PeriodicalId\":100634,\"journal\":{\"name\":\"IEEE Open Journal on Immersive Displays\",\"volume\":\"2 \",\"pages\":\"89-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11165197\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal on Immersive Displays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11165197/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal on Immersive Displays","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11165197/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化物薄膜晶体管(TFTs)由于其高迁移率、光学透明性和低温可加工性而成为现代显示技术中的关键部件。随着设计空间在材料系统、器件架构和操作条件上的扩展,对支持可靠和高效建模的计算方法的需求不断增长。本文综述了基于人工智能和物理的氧化tft方法的全面概述,从原子材料分析到电路级建模。我们讨论了原子模拟,如密度泛函理论(DFT)和分子动力学(MD)的缺陷能量学和载流子行为,技术计算机辅助设计(TCAD)的器件级电热分析,和紧凑模型的电路仿真。讨论了人工智能在替代建模、参数提取、材料、器件结构和工艺优化中的作用。通过跨多个尺度的桥接模拟方法,本综述为加速氧化物tft的设计和分析提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI and Physics-Based Computational Methods for Oxide Thin-Film Transistors: A Review
Oxide thin-film transistors (TFTs) are critical components in modern display technologies due to their high mobility, optical transparency, and low-temperature processability. As the design space expands across material systems, device architectures, and operating conditions, there is a growing demand for computational methods that support reliable and efficient modeling. This review presents a comprehensive overview of AI- and physics-based methods for oxide TFTs, spanning from atomistic material analysis to circuit-level modeling. We discuss atomistic simulations such as density functional theory (DFT) and molecular dynamics (MD) for defect energetics and carrier behavior, technology computer-aided design (TCAD) for device-level electrothermal analysis, and compact models for circuit simulation. The role of artificial intelligence in surrogate modeling, parameter extraction, optimization of materials, device structures, and processes is discussed. By bridging simulation methods across multiple scales, this review provides insights into accelerating the design, and analysis of oxide TFTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信