基于hfr视频DIC分析的牛颤检测

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tegar Palyus Fiqar;Feiyue Wang;Kohei Shimasaki;Idaku Ishii;Toshihisa Sugino
{"title":"基于hfr视频DIC分析的牛颤检测","authors":"Tegar Palyus Fiqar;Feiyue Wang;Kohei Shimasaki;Idaku Ishii;Toshihisa Sugino","doi":"10.1109/LSENS.2025.3607707","DOIUrl":null,"url":null,"abstract":"This study proposes a high-frame-rate (HFR) video analysis method that functions as a software-based vibration sensor to estimate when, where, and which body parts of cattle exhibit trembling by detecting tens-of-Hertz frequency components. The proposed sensor estimates velocities at multiple points on the cattle with subpixel precision using HFR-video-based digital image correlation, which is combined with a convolutional neural network-based object detection method to update segmented regions in each frame, even when multiple cattle are moving. We validated our proposed method using 1920 × 1080 video captured at 125 fps for multiple juvenile cattle in an indoor barn, demonstrating that the software-based vibration sensor can detect and visualize short-term trembling behavior with frequencies of 10–14 Hz.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cattle Trembling Detection Using HFR-Video-Based DIC Analysis\",\"authors\":\"Tegar Palyus Fiqar;Feiyue Wang;Kohei Shimasaki;Idaku Ishii;Toshihisa Sugino\",\"doi\":\"10.1109/LSENS.2025.3607707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a high-frame-rate (HFR) video analysis method that functions as a software-based vibration sensor to estimate when, where, and which body parts of cattle exhibit trembling by detecting tens-of-Hertz frequency components. The proposed sensor estimates velocities at multiple points on the cattle with subpixel precision using HFR-video-based digital image correlation, which is combined with a convolutional neural network-based object detection method to update segmented regions in each frame, even when multiple cattle are moving. We validated our proposed method using 1920 × 1080 video captured at 125 fps for multiple juvenile cattle in an indoor barn, demonstrating that the software-based vibration sensor can detect and visualize short-term trembling behavior with frequencies of 10–14 Hz.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11157709/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11157709/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种高帧率(HFR)视频分析方法,该方法作为基于软件的振动传感器,通过检测几十赫兹的频率成分来估计牛的身体部位何时、何地以及哪些部位会出现颤抖。该传感器利用基于hfr视频的数字图像相关,以亚像素精度估计牛身上多个点的速度,并结合基于卷积神经网络的目标检测方法,在每帧中更新分割区域,即使在多头牛运动时也是如此。我们使用以125 fps拍摄的1920 × 1080视频对室内畜棚中的多头幼牛进行了验证,证明基于软件的振动传感器可以检测和可视化频率为10-14 Hz的短期抖动行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cattle Trembling Detection Using HFR-Video-Based DIC Analysis
This study proposes a high-frame-rate (HFR) video analysis method that functions as a software-based vibration sensor to estimate when, where, and which body parts of cattle exhibit trembling by detecting tens-of-Hertz frequency components. The proposed sensor estimates velocities at multiple points on the cattle with subpixel precision using HFR-video-based digital image correlation, which is combined with a convolutional neural network-based object detection method to update segmented regions in each frame, even when multiple cattle are moving. We validated our proposed method using 1920 × 1080 video captured at 125 fps for multiple juvenile cattle in an indoor barn, demonstrating that the software-based vibration sensor can detect and visualize short-term trembling behavior with frequencies of 10–14 Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信