直接采样时域测量接收机的多电平验证

IF 1.5
Ivan Struzhko;Marc García-Bermúdez;Jordi Solé-Lloveras;Manuel Añón-Cancela;Tom Hartman;Marco A. Azpúrua;Frank Leferink
{"title":"直接采样时域测量接收机的多电平验证","authors":"Ivan Struzhko;Marc García-Bermúdez;Jordi Solé-Lloveras;Manuel Añón-Cancela;Tom Hartman;Marco A. Azpúrua;Frank Leferink","doi":"10.1109/OJIM.2025.3604983","DOIUrl":null,"url":null,"abstract":"Although the time-domain approach to electromagnetic interference evaluation offers numerous advantages, including shorter test duration and multichannel acquisition, its practical adoption remains limited. This is mainly because existing standards, such as CISPR 16-1-1, do not explicitly address direct sampling time-domain measuring receivers or define specific calibration and validation procedures for them. While several studies have demonstrated successful use cases, a comprehensive validation of such systems has not yet been performed. This article presents multilevel experimental validations of time-domain measuring receivers, focusing on the direct sampling approach and oscilloscope-based implementations. First, meta-comparisons of FFT-based receivers are made using calibration data obtained from certificates of accredited laboratories. Then, controlled signal sources with known time and spectral characteristics are used to cross-check with different measuring receiver models. Finally, several instruments are benchmarked with respect to their standard detector outputs when measuring the emissions of a power converter while spread spectrum techniques are used. The results show good agreement between the measuring receivers in the time domain and the tested conventional receivers in the frequency domain within the standard error, even though the complexity of the measured signals is different.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-13"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11152399","citationCount":"0","resultStr":"{\"title\":\"Multilevel Validation of Direct Sampling Time-Domain Measuring Receivers\",\"authors\":\"Ivan Struzhko;Marc García-Bermúdez;Jordi Solé-Lloveras;Manuel Añón-Cancela;Tom Hartman;Marco A. Azpúrua;Frank Leferink\",\"doi\":\"10.1109/OJIM.2025.3604983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the time-domain approach to electromagnetic interference evaluation offers numerous advantages, including shorter test duration and multichannel acquisition, its practical adoption remains limited. This is mainly because existing standards, such as CISPR 16-1-1, do not explicitly address direct sampling time-domain measuring receivers or define specific calibration and validation procedures for them. While several studies have demonstrated successful use cases, a comprehensive validation of such systems has not yet been performed. This article presents multilevel experimental validations of time-domain measuring receivers, focusing on the direct sampling approach and oscilloscope-based implementations. First, meta-comparisons of FFT-based receivers are made using calibration data obtained from certificates of accredited laboratories. Then, controlled signal sources with known time and spectral characteristics are used to cross-check with different measuring receiver models. Finally, several instruments are benchmarked with respect to their standard detector outputs when measuring the emissions of a power converter while spread spectrum techniques are used. The results show good agreement between the measuring receivers in the time domain and the tested conventional receivers in the frequency domain within the standard error, even though the complexity of the measured signals is different.\",\"PeriodicalId\":100630,\"journal\":{\"name\":\"IEEE Open Journal of Instrumentation and Measurement\",\"volume\":\"4 \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11152399\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Instrumentation and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11152399/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11152399/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管时域电磁干扰评估方法具有许多优点,包括较短的测试时间和多通道采集,但其实际应用仍然有限。这主要是因为现有的标准,如CISPR 16-1-1,没有明确地解决直接采样时域测量接收器或定义特定的校准和验证程序。虽然一些研究已经证明了成功的用例,但还没有对这些系统进行全面的验证。本文介绍了时域测量接收机的多电平实验验证,重点介绍了直接采样方法和基于示波器的实现。首先,使用从认可实验室证书获得的校准数据对基于fft的接收器进行meta比较。然后,利用已知时间和频谱特性的可控信号源与不同的测量接收机模型进行交叉检验。最后,在使用扩频技术测量功率转换器的发射时,对几种仪器的标准检测器输出进行基准测试。结果表明,尽管被测信号的复杂程度不同,但在标准误差范围内,被测接收机在时域与被测常规接收机在频域具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel Validation of Direct Sampling Time-Domain Measuring Receivers
Although the time-domain approach to electromagnetic interference evaluation offers numerous advantages, including shorter test duration and multichannel acquisition, its practical adoption remains limited. This is mainly because existing standards, such as CISPR 16-1-1, do not explicitly address direct sampling time-domain measuring receivers or define specific calibration and validation procedures for them. While several studies have demonstrated successful use cases, a comprehensive validation of such systems has not yet been performed. This article presents multilevel experimental validations of time-domain measuring receivers, focusing on the direct sampling approach and oscilloscope-based implementations. First, meta-comparisons of FFT-based receivers are made using calibration data obtained from certificates of accredited laboratories. Then, controlled signal sources with known time and spectral characteristics are used to cross-check with different measuring receiver models. Finally, several instruments are benchmarked with respect to their standard detector outputs when measuring the emissions of a power converter while spread spectrum techniques are used. The results show good agreement between the measuring receivers in the time domain and the tested conventional receivers in the frequency domain within the standard error, even though the complexity of the measured signals is different.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信