低信噪比下RCMNet对LPI雷达波形的识别

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
An Yan;Lan Lan;Xiaorui Li;Shengqi Zhu;Ximin Li;Guisheng Liao
{"title":"低信噪比下RCMNet对LPI雷达波形的识别","authors":"An Yan;Lan Lan;Xiaorui Li;Shengqi Zhu;Ximin Li;Guisheng Liao","doi":"10.1109/LSP.2025.3609636","DOIUrl":null,"url":null,"abstract":"This letter designs a radar convolution-matrix long short-term memory (mLSTM)-based network (RCMNet) for low probability of intercept (LPI) radar waveform recognition. At the modelling stage, the proposed RCMNet architecture operates directly on time-domain I/Q data while incorporating handcrafted interpretable features (including the amplitude and phase) as auxiliary inputs to provide shallow priors for initial signal interpretation. To address the low-SNR challenge, an integrated denoising mechanism is designed in RCMNet, which employs a joint training strategy aiming to optimize both reconstruction loss and cross-entropy loss. Numerical results demonstrate that the devised RCMNet achieves an average recognition accuracy of 88.17% across 12 types of radar waveform at SNR = −15 dB.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3650-3654"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of LPI Radar Waveforms via RCMNet in Low SNR Scenarios\",\"authors\":\"An Yan;Lan Lan;Xiaorui Li;Shengqi Zhu;Ximin Li;Guisheng Liao\",\"doi\":\"10.1109/LSP.2025.3609636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter designs a radar convolution-matrix long short-term memory (mLSTM)-based network (RCMNet) for low probability of intercept (LPI) radar waveform recognition. At the modelling stage, the proposed RCMNet architecture operates directly on time-domain I/Q data while incorporating handcrafted interpretable features (including the amplitude and phase) as auxiliary inputs to provide shallow priors for initial signal interpretation. To address the low-SNR challenge, an integrated denoising mechanism is designed in RCMNet, which employs a joint training strategy aiming to optimize both reconstruction loss and cross-entropy loss. Numerical results demonstrate that the devised RCMNet achieves an average recognition accuracy of 88.17% across 12 types of radar waveform at SNR = −15 dB.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3650-3654\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11162673/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11162673/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种基于雷达卷积矩阵长短期记忆(mLSTM)的网络(RCMNet),用于低截获概率(LPI)雷达波形识别。在建模阶段,提出的RCMNet架构直接操作时域I/Q数据,同时结合手工制作的可解释特征(包括幅度和相位)作为辅助输入,为初始信号解释提供浅先验。为了解决低信噪比的挑战,在RCMNet中设计了一个集成的去噪机制,该机制采用联合训练策略,旨在优化重建损失和交叉熵损失。仿真结果表明,在信噪比为- 15 dB的条件下,所设计的RCMNet对12种雷达波形的平均识别精度达到了88.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of LPI Radar Waveforms via RCMNet in Low SNR Scenarios
This letter designs a radar convolution-matrix long short-term memory (mLSTM)-based network (RCMNet) for low probability of intercept (LPI) radar waveform recognition. At the modelling stage, the proposed RCMNet architecture operates directly on time-domain I/Q data while incorporating handcrafted interpretable features (including the amplitude and phase) as auxiliary inputs to provide shallow priors for initial signal interpretation. To address the low-SNR challenge, an integrated denoising mechanism is designed in RCMNet, which employs a joint training strategy aiming to optimize both reconstruction loss and cross-entropy loss. Numerical results demonstrate that the devised RCMNet achieves an average recognition accuracy of 88.17% across 12 types of radar waveform at SNR = −15 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信