{"title":"免耕覆盖残茬提高土壤物理性质,降低土壤抗渗透能力——东北软土地区的比较研究","authors":"Dawei Wang, Hao Sun, Linding Wei, Boxiang Wang, Jinyou Qiao, Jian Sun, Haitao Chen","doi":"10.5194/egusphere-2025-3174","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The mollisol region of Northeast China constitutes a critical grain production base. However, prolonged intensive farming has disrupted native soil structures, driving soil degradation and generating excessive crop residues that constrain sustainable agricultural development. To address these challenges, a field experiment evaluated four mechanized tillage-sowing practices: Plow Tillage with Precise Sowing (PTS), Rotary Tillage with Precise Sowing (RTS), No-Tillage Sowing (NTS), and No-Tillage with Stubble Mulching and Sowing (NTMS). This study systematically assessed the impacts of these practices on soil compaction through analysis of soil penetration resistance (SPR), while further examining their effects on soil water content (SWC) and soil bulk density (SBD). Results demonstrated that NTMS significantly increased SWC, whereas NTS resulted in higher SBD and SPR than other practices. Both PTS and RTS improved SWC relative to NTS and reduced SBD more effectively than NTS or NTMS. Across all practices, SPR exhibited consistent trends during the soybean growth cycle, peaking at the podding stage. NTMS outperformed alternative practices by optimizing soil physical properties, thereby enhancing soil quality and slowing degradation processes in the black soil. Collectively, NTMS implemented within a maize-soybean rotation system offers a viable solution to address maize straw surplus and soil degradation in Northeast China's mollisol region.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"89 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No-tillage with Stubble Mulching Enhances Soil Physical Properties and Reduces Soil Penetration Resistance: A Comparative Study in Mollisol Region of Northeast China\",\"authors\":\"Dawei Wang, Hao Sun, Linding Wei, Boxiang Wang, Jinyou Qiao, Jian Sun, Haitao Chen\",\"doi\":\"10.5194/egusphere-2025-3174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The mollisol region of Northeast China constitutes a critical grain production base. However, prolonged intensive farming has disrupted native soil structures, driving soil degradation and generating excessive crop residues that constrain sustainable agricultural development. To address these challenges, a field experiment evaluated four mechanized tillage-sowing practices: Plow Tillage with Precise Sowing (PTS), Rotary Tillage with Precise Sowing (RTS), No-Tillage Sowing (NTS), and No-Tillage with Stubble Mulching and Sowing (NTMS). This study systematically assessed the impacts of these practices on soil compaction through analysis of soil penetration resistance (SPR), while further examining their effects on soil water content (SWC) and soil bulk density (SBD). Results demonstrated that NTMS significantly increased SWC, whereas NTS resulted in higher SBD and SPR than other practices. Both PTS and RTS improved SWC relative to NTS and reduced SBD more effectively than NTS or NTMS. Across all practices, SPR exhibited consistent trends during the soybean growth cycle, peaking at the podding stage. NTMS outperformed alternative practices by optimizing soil physical properties, thereby enhancing soil quality and slowing degradation processes in the black soil. Collectively, NTMS implemented within a maize-soybean rotation system offers a viable solution to address maize straw surplus and soil degradation in Northeast China's mollisol region.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2025-3174\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-3174","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
No-tillage with Stubble Mulching Enhances Soil Physical Properties and Reduces Soil Penetration Resistance: A Comparative Study in Mollisol Region of Northeast China
Abstract. The mollisol region of Northeast China constitutes a critical grain production base. However, prolonged intensive farming has disrupted native soil structures, driving soil degradation and generating excessive crop residues that constrain sustainable agricultural development. To address these challenges, a field experiment evaluated four mechanized tillage-sowing practices: Plow Tillage with Precise Sowing (PTS), Rotary Tillage with Precise Sowing (RTS), No-Tillage Sowing (NTS), and No-Tillage with Stubble Mulching and Sowing (NTMS). This study systematically assessed the impacts of these practices on soil compaction through analysis of soil penetration resistance (SPR), while further examining their effects on soil water content (SWC) and soil bulk density (SBD). Results demonstrated that NTMS significantly increased SWC, whereas NTS resulted in higher SBD and SPR than other practices. Both PTS and RTS improved SWC relative to NTS and reduced SBD more effectively than NTS or NTMS. Across all practices, SPR exhibited consistent trends during the soybean growth cycle, peaking at the podding stage. NTMS outperformed alternative practices by optimizing soil physical properties, thereby enhancing soil quality and slowing degradation processes in the black soil. Collectively, NTMS implemented within a maize-soybean rotation system offers a viable solution to address maize straw surplus and soil degradation in Northeast China's mollisol region.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).