{"title":"表达lmo3的峡周祖细胞维持哺乳动物肠远端细胞生态位的更新和修复","authors":"Daxin Jiang, Guoli Zhu, Yongchao Zhang, Jiawen Wang, Nannan Qian, Zhen Jin, Qingyu Sun, Haimeng Yu, Kebei Tang, Tao Cai, Fengchao Wang, Rongwen Xi","doi":"10.1016/j.devcel.2025.09.004","DOIUrl":null,"url":null,"abstract":"Intestinal telocytes that reside immediately beneath the intestinal epithelium exert niche-supporting roles for intestinal stem cells and their progenies. They are heterogeneous cells compartmentalized along the crypt-villus axis, but the mechanisms governing the maintenance of this telocyte population remain unclear. Here, we identify a distinct population of subepithelial mesenchymal cells in the developing mouse embryo, marked by <em>LIM Domain Only 3</em> (<em>Lmo3</em>), as the cellular origin of post-natal intestinal telocytes. The <em>Lmo3</em><sup><em>+</em></sup> cells emerge prior to villus formation at embryonic day 13.5, and after birth, they progressively acquire a spatial confinement to the intestinal isthmus region, where they persist as long-lived, slow-cycling cells, supplying both peri-villus and peri-crypt telocytes. Further, we show that <em>Lmo3</em><sup>+</sup> cells respond rapidly to tissue damage, becoming activated to promote repair of the telocyte niche. Therefore, a quiescent and damage-responsive progenitor cell population marked by <em>Lmo3</em> maintains the intestinal telocyte niche.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"94 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lmo3-expressing peri-isthmus progenitor cells sustain renewal and repair of the mammalian intestinal telocyte niche\",\"authors\":\"Daxin Jiang, Guoli Zhu, Yongchao Zhang, Jiawen Wang, Nannan Qian, Zhen Jin, Qingyu Sun, Haimeng Yu, Kebei Tang, Tao Cai, Fengchao Wang, Rongwen Xi\",\"doi\":\"10.1016/j.devcel.2025.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intestinal telocytes that reside immediately beneath the intestinal epithelium exert niche-supporting roles for intestinal stem cells and their progenies. They are heterogeneous cells compartmentalized along the crypt-villus axis, but the mechanisms governing the maintenance of this telocyte population remain unclear. Here, we identify a distinct population of subepithelial mesenchymal cells in the developing mouse embryo, marked by <em>LIM Domain Only 3</em> (<em>Lmo3</em>), as the cellular origin of post-natal intestinal telocytes. The <em>Lmo3</em><sup><em>+</em></sup> cells emerge prior to villus formation at embryonic day 13.5, and after birth, they progressively acquire a spatial confinement to the intestinal isthmus region, where they persist as long-lived, slow-cycling cells, supplying both peri-villus and peri-crypt telocytes. Further, we show that <em>Lmo3</em><sup>+</sup> cells respond rapidly to tissue damage, becoming activated to promote repair of the telocyte niche. Therefore, a quiescent and damage-responsive progenitor cell population marked by <em>Lmo3</em> maintains the intestinal telocyte niche.\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2025.09.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.09.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lmo3-expressing peri-isthmus progenitor cells sustain renewal and repair of the mammalian intestinal telocyte niche
Intestinal telocytes that reside immediately beneath the intestinal epithelium exert niche-supporting roles for intestinal stem cells and their progenies. They are heterogeneous cells compartmentalized along the crypt-villus axis, but the mechanisms governing the maintenance of this telocyte population remain unclear. Here, we identify a distinct population of subepithelial mesenchymal cells in the developing mouse embryo, marked by LIM Domain Only 3 (Lmo3), as the cellular origin of post-natal intestinal telocytes. The Lmo3+ cells emerge prior to villus formation at embryonic day 13.5, and after birth, they progressively acquire a spatial confinement to the intestinal isthmus region, where they persist as long-lived, slow-cycling cells, supplying both peri-villus and peri-crypt telocytes. Further, we show that Lmo3+ cells respond rapidly to tissue damage, becoming activated to promote repair of the telocyte niche. Therefore, a quiescent and damage-responsive progenitor cell population marked by Lmo3 maintains the intestinal telocyte niche.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.