界面稳定固体电解质的多尺度设计策略和从原子到宏观的动态界面解码

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yingdong Chen, Sijia Gao, Yujing Su, Tao Chen, Jiajun Fu
{"title":"界面稳定固体电解质的多尺度设计策略和从原子到宏观的动态界面解码","authors":"Yingdong Chen, Sijia Gao, Yujing Su, Tao Chen, Jiajun Fu","doi":"10.1002/aenm.202502938","DOIUrl":null,"url":null,"abstract":"Solid-state lithium metal batteries (SSLMBs) are poised to revolutionize energy storage technologies, delivering unparalleled energy density and intrinsic safety through the elimination of flammable liquid electrolytes. Nevertheless, the transition from laboratory breakthroughs to commercial viability is critically impeded by persistent interfacial dilemmas, including lithium dendrite propagation, parasitic chemical/electrochemical degradation at electrode/electrolyte interfaces, and insufficient interfacial contact intimacy. This review systematically and comprehensively reviews the design strategies of interface-stabilized solid electrolytes, covering inorganic solid electrolytes, solid polymer electrolytes, and inorganic-polymer composites. The review further decodes the dynamic interplay between the microstructure of solid electrolytes, interfacial ion transport kinetics, and interphase evolution through emerging in situ/operando characterization techniques. By elucidating structure-property-interphase relationships across atomic-to-macroscopic scales, this review unveils mechanistic insights into the dynamic interfacial evolution and interfacial failure modes over multi-length scales. Finally, a forward-looking perspective on interface-stabilized solid electrolytes is proposed, thereby paving the way for the practical realization of SSLMBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"1 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Design Strategies of Interface-Stabilized Solid Electrolytes and Dynamic Interphase Decoding from Atomic-to-Macroscopic Perspectives\",\"authors\":\"Yingdong Chen, Sijia Gao, Yujing Su, Tao Chen, Jiajun Fu\",\"doi\":\"10.1002/aenm.202502938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state lithium metal batteries (SSLMBs) are poised to revolutionize energy storage technologies, delivering unparalleled energy density and intrinsic safety through the elimination of flammable liquid electrolytes. Nevertheless, the transition from laboratory breakthroughs to commercial viability is critically impeded by persistent interfacial dilemmas, including lithium dendrite propagation, parasitic chemical/electrochemical degradation at electrode/electrolyte interfaces, and insufficient interfacial contact intimacy. This review systematically and comprehensively reviews the design strategies of interface-stabilized solid electrolytes, covering inorganic solid electrolytes, solid polymer electrolytes, and inorganic-polymer composites. The review further decodes the dynamic interplay between the microstructure of solid electrolytes, interfacial ion transport kinetics, and interphase evolution through emerging in situ/operando characterization techniques. By elucidating structure-property-interphase relationships across atomic-to-macroscopic scales, this review unveils mechanistic insights into the dynamic interfacial evolution and interfacial failure modes over multi-length scales. Finally, a forward-looking perspective on interface-stabilized solid electrolytes is proposed, thereby paving the way for the practical realization of SSLMBs.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202502938\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502938","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固态锂金属电池(sslmb)有望彻底改变储能技术,通过消除易燃液体电解质,提供无与伦比的能量密度和内在安全性。然而,从实验室突破到商业可行性的转变受到持续存在的界面困境的严重阻碍,包括锂枝晶的传播,电极/电解质界面的寄生化学/电化学降解,以及界面接触亲密度不足。本文系统、全面地综述了界面稳定固体电解质的设计策略,包括无机固体电解质、固体聚合物电解质和无机-聚合物复合材料。该综述通过新兴的原位/操作表征技术进一步解读了固体电解质微观结构、界面离子传输动力学和界面相演化之间的动态相互作用。通过在原子到宏观尺度上阐明结构-性能-界面关系,本综述揭示了在多长度尺度上动态界面演化和界面破坏模式的机制见解。最后,提出了界面稳定固体电解质的前瞻性观点,为sslmb的实际实现铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale Design Strategies of Interface-Stabilized Solid Electrolytes and Dynamic Interphase Decoding from Atomic-to-Macroscopic Perspectives

Multiscale Design Strategies of Interface-Stabilized Solid Electrolytes and Dynamic Interphase Decoding from Atomic-to-Macroscopic Perspectives
Solid-state lithium metal batteries (SSLMBs) are poised to revolutionize energy storage technologies, delivering unparalleled energy density and intrinsic safety through the elimination of flammable liquid electrolytes. Nevertheless, the transition from laboratory breakthroughs to commercial viability is critically impeded by persistent interfacial dilemmas, including lithium dendrite propagation, parasitic chemical/electrochemical degradation at electrode/electrolyte interfaces, and insufficient interfacial contact intimacy. This review systematically and comprehensively reviews the design strategies of interface-stabilized solid electrolytes, covering inorganic solid electrolytes, solid polymer electrolytes, and inorganic-polymer composites. The review further decodes the dynamic interplay between the microstructure of solid electrolytes, interfacial ion transport kinetics, and interphase evolution through emerging in situ/operando characterization techniques. By elucidating structure-property-interphase relationships across atomic-to-macroscopic scales, this review unveils mechanistic insights into the dynamic interfacial evolution and interfacial failure modes over multi-length scales. Finally, a forward-looking perspective on interface-stabilized solid electrolytes is proposed, thereby paving the way for the practical realization of SSLMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信