{"title":"具有多重交联网络的刚柔协同聚合物介质用于高温静电储能","authors":"Baotieliang Wang, Ji-Chun Zhao, Chuanjia Jiao, Jiayan Li, Zhaoyu Ran, Donghua Xu, Zhao-Yan Sun, Qi Li, Jiawei Zou, Shifang Luan","doi":"10.1039/d5ee04064g","DOIUrl":null,"url":null,"abstract":"High-temperature dielectric energy storage materials are essential for next-generation power electronics and electrical systems operating in extreme environments. However, achieving high-energy storage in polymer dielectrics at ultrahigh temperatures (e.g., 200°C) remains a critical challenge, chiefly owing to the marked enhancement of molecular chain thermal motion, which gives rise to elevated charge conduction losses and diminished breakdown strength. Here, we propose a rigid-flexible synergistic multiple crosslinked network strategy that simultaneously suppresses inter/intra-chain charge transport while inhibiting thermal molecular motion. This rigid crosslinked architecture supports adjacent polymer chains, enhancing local segmental stability while also reducing interchain π-π stacking and dipole interactions. Further, enabled by the thermodynamic annealing of flexible segments, the homogenously distributed interchain rigid scaffolds strike a balance between local structural rigidity and global deformability, thereby efficiently mitigating bulk charge conduction and boosting energy storage capabilities under extreme conditions. The resulting material exhibits an exceptional energy storage performance at 200°C, with a discharge energy density of 6.91 J cm-3 at 90% efficiency. Moreover, it demonstrates outstanding cycling stability, maintaining performance over 50,000 charge-discharge cycles at 500 MV m-1. This study presents a new design strategy for high-temperature dielectric materials, showcasing the potential of multiple crosslinked structures to meet the demanding requirements of ultrahigh-temperature applications.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"144 1","pages":""},"PeriodicalIF":30.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigid-Flexible Synergized Polymer Dielectrics with Multiple Crosslinking Networks for High-Temperature Electrostatic Energy Storage\",\"authors\":\"Baotieliang Wang, Ji-Chun Zhao, Chuanjia Jiao, Jiayan Li, Zhaoyu Ran, Donghua Xu, Zhao-Yan Sun, Qi Li, Jiawei Zou, Shifang Luan\",\"doi\":\"10.1039/d5ee04064g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-temperature dielectric energy storage materials are essential for next-generation power electronics and electrical systems operating in extreme environments. However, achieving high-energy storage in polymer dielectrics at ultrahigh temperatures (e.g., 200°C) remains a critical challenge, chiefly owing to the marked enhancement of molecular chain thermal motion, which gives rise to elevated charge conduction losses and diminished breakdown strength. Here, we propose a rigid-flexible synergistic multiple crosslinked network strategy that simultaneously suppresses inter/intra-chain charge transport while inhibiting thermal molecular motion. This rigid crosslinked architecture supports adjacent polymer chains, enhancing local segmental stability while also reducing interchain π-π stacking and dipole interactions. Further, enabled by the thermodynamic annealing of flexible segments, the homogenously distributed interchain rigid scaffolds strike a balance between local structural rigidity and global deformability, thereby efficiently mitigating bulk charge conduction and boosting energy storage capabilities under extreme conditions. The resulting material exhibits an exceptional energy storage performance at 200°C, with a discharge energy density of 6.91 J cm-3 at 90% efficiency. Moreover, it demonstrates outstanding cycling stability, maintaining performance over 50,000 charge-discharge cycles at 500 MV m-1. This study presents a new design strategy for high-temperature dielectric materials, showcasing the potential of multiple crosslinked structures to meet the demanding requirements of ultrahigh-temperature applications.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ee04064g\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ee04064g","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rigid-Flexible Synergized Polymer Dielectrics with Multiple Crosslinking Networks for High-Temperature Electrostatic Energy Storage
High-temperature dielectric energy storage materials are essential for next-generation power electronics and electrical systems operating in extreme environments. However, achieving high-energy storage in polymer dielectrics at ultrahigh temperatures (e.g., 200°C) remains a critical challenge, chiefly owing to the marked enhancement of molecular chain thermal motion, which gives rise to elevated charge conduction losses and diminished breakdown strength. Here, we propose a rigid-flexible synergistic multiple crosslinked network strategy that simultaneously suppresses inter/intra-chain charge transport while inhibiting thermal molecular motion. This rigid crosslinked architecture supports adjacent polymer chains, enhancing local segmental stability while also reducing interchain π-π stacking and dipole interactions. Further, enabled by the thermodynamic annealing of flexible segments, the homogenously distributed interchain rigid scaffolds strike a balance between local structural rigidity and global deformability, thereby efficiently mitigating bulk charge conduction and boosting energy storage capabilities under extreme conditions. The resulting material exhibits an exceptional energy storage performance at 200°C, with a discharge energy density of 6.91 J cm-3 at 90% efficiency. Moreover, it demonstrates outstanding cycling stability, maintaining performance over 50,000 charge-discharge cycles at 500 MV m-1. This study presents a new design strategy for high-temperature dielectric materials, showcasing the potential of multiple crosslinked structures to meet the demanding requirements of ultrahigh-temperature applications.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).