有机热电材料中塞贝克系数的通用软上限

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-09-26 DOI:10.1016/j.joule.2025.102140
Zelong Li, Dorothea Scheunemann, Dennis Derewjanko, Yuqian Liu, Martijn Kemerink, Guangzheng Zuo
{"title":"有机热电材料中塞贝克系数的通用软上限","authors":"Zelong Li, Dorothea Scheunemann, Dennis Derewjanko, Yuqian Liu, Martijn Kemerink, Guangzheng Zuo","doi":"10.1016/j.joule.2025.102140","DOIUrl":null,"url":null,"abstract":"The trade-off between conductivity (<span><span><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></script></span>) and Seebeck coefficient (<span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span>) is an ongoing challenge for organic thermoelectrics as it determines how far the power factor (<span><span><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mi is=\"true\">σ</mi><msup is=\"true\"><mi is=\"true\">S</mi><mn is=\"true\">2</mn></msup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mi is=\"true\">σ</mi><msup is=\"true\"><mi is=\"true\">S</mi><mn is=\"true\">2</mn></msup></mrow></math></script></span>) can ultimately be pushed. Comparing experimental data for different polymers at variable doping levels, we show that the <span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span> vs. <span><span><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></script></span> curve is universal up to the maximum <span><span><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></script></span>, followed by a material-dependent roll-off, when <span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span> and <span><span><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></script></span> are normalized to their values at maximum <span><span><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></script></span> and find there is a soft upper limit for <span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span> (∼200 μV/K), where the optimal power factor is achieved. Combining tight-binding and kinetic Monte Carlo modeling, we quantitatively explain this behavior in terms of quasi-free charges moving in a renormalized density of states of Gaussian shape, where the renormalization accounts for the screened interaction with the ionized dopants. Our results imply that the trade-off exists only at the single-material level and leads to practical design rules.","PeriodicalId":343,"journal":{"name":"Joule","volume":"28 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal soft upper limit to the Seebeck coefficient in organic thermoelectrics\",\"authors\":\"Zelong Li, Dorothea Scheunemann, Dennis Derewjanko, Yuqian Liu, Martijn Kemerink, Guangzheng Zuo\",\"doi\":\"10.1016/j.joule.2025.102140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trade-off between conductivity (<span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></script></span>) and Seebeck coefficient (<span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span>) is an ongoing challenge for organic thermoelectrics as it determines how far the power factor (<span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mo><mi is=\\\"true\\\">σ</mi><msup is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mn is=\\\"true\\\">2</mn></msup></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">=</mo><mi is=\\\"true\\\">σ</mi><msup is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mn is=\\\"true\\\">2</mn></msup></mrow></math></script></span>) can ultimately be pushed. Comparing experimental data for different polymers at variable doping levels, we show that the <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span> vs. <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></script></span> curve is universal up to the maximum <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></script></span>, followed by a material-dependent roll-off, when <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span> and <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></script></span> are normalized to their values at maximum <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></script></span> and find there is a soft upper limit for <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span> (∼200 μV/K), where the optimal power factor is achieved. Combining tight-binding and kinetic Monte Carlo modeling, we quantitatively explain this behavior in terms of quasi-free charges moving in a renormalized density of states of Gaussian shape, where the renormalization accounts for the screened interaction with the ionized dopants. Our results imply that the trade-off exists only at the single-material level and leads to practical design rules.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102140\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102140","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

导电性(σσ)和塞贝克系数(SS)之间的权衡是有机热电器件的一个持续挑战,因为它决定了功率因数(PF=σS2PF=σS2)最终可以被推多远。比较不同聚合物在不同掺杂水平下的实验数据,我们发现SS和σσ曲线在最大PFPF前是普遍的,然后是材料相关的滚降,当SS和σσ归一化到最大PFPF时,SS存在软上限(~ 200 μV/K),达到最佳功率因数。结合紧密结合和动力学蒙特卡罗模型,我们定量地解释了准自由电荷在高斯形状的重正规化态密度中运动的这种行为,其中重正规化解释了与电离掺杂剂的筛选相互作用。我们的结果表明,这种权衡只存在于单一材料水平,并导致实际的设计规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A universal soft upper limit to the Seebeck coefficient in organic thermoelectrics

A universal soft upper limit to the Seebeck coefficient in organic thermoelectrics
The trade-off between conductivity (σ) and Seebeck coefficient (S) is an ongoing challenge for organic thermoelectrics as it determines how far the power factor (PF=σS2) can ultimately be pushed. Comparing experimental data for different polymers at variable doping levels, we show that the S vs. σ curve is universal up to the maximum PF, followed by a material-dependent roll-off, when S and σ are normalized to their values at maximum PF and find there is a soft upper limit for S (∼200 μV/K), where the optimal power factor is achieved. Combining tight-binding and kinetic Monte Carlo modeling, we quantitatively explain this behavior in terms of quasi-free charges moving in a renormalized density of states of Gaussian shape, where the renormalization accounts for the screened interaction with the ionized dopants. Our results imply that the trade-off exists only at the single-material level and leads to practical design rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信