{"title":"有机热电材料中塞贝克系数的通用软上限","authors":"Zelong Li, Dorothea Scheunemann, Dennis Derewjanko, Yuqian Liu, Martijn Kemerink, Guangzheng Zuo","doi":"10.1016/j.joule.2025.102140","DOIUrl":null,"url":null,"abstract":"The trade-off between conductivity (<span><span><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></script></span>) and Seebeck coefficient (<span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span>) is an ongoing challenge for organic thermoelectrics as it determines how far the power factor (<span><span><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mi is=\"true\">σ</mi><msup is=\"true\"><mi is=\"true\">S</mi><mn is=\"true\">2</mn></msup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mi is=\"true\">σ</mi><msup is=\"true\"><mi is=\"true\">S</mi><mn is=\"true\">2</mn></msup></mrow></math></script></span>) can ultimately be pushed. Comparing experimental data for different polymers at variable doping levels, we show that the <span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span> vs. <span><span><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></script></span> curve is universal up to the maximum <span><span><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></script></span>, followed by a material-dependent roll-off, when <span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span> and <span><span><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">σ</mi></mrow></math></script></span> are normalized to their values at maximum <span><span><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">P</mi><mi is=\"true\">F</mi></mrow></math></script></span> and find there is a soft upper limit for <span><span><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">S</mi></mrow></math></script></span> (∼200 μV/K), where the optimal power factor is achieved. Combining tight-binding and kinetic Monte Carlo modeling, we quantitatively explain this behavior in terms of quasi-free charges moving in a renormalized density of states of Gaussian shape, where the renormalization accounts for the screened interaction with the ionized dopants. Our results imply that the trade-off exists only at the single-material level and leads to practical design rules.","PeriodicalId":343,"journal":{"name":"Joule","volume":"28 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal soft upper limit to the Seebeck coefficient in organic thermoelectrics\",\"authors\":\"Zelong Li, Dorothea Scheunemann, Dennis Derewjanko, Yuqian Liu, Martijn Kemerink, Guangzheng Zuo\",\"doi\":\"10.1016/j.joule.2025.102140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trade-off between conductivity (<span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></script></span>) and Seebeck coefficient (<span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span>) is an ongoing challenge for organic thermoelectrics as it determines how far the power factor (<span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mo><mi is=\\\"true\\\">σ</mi><msup is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mn is=\\\"true\\\">2</mn></msup></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">=</mo><mi is=\\\"true\\\">σ</mi><msup is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mn is=\\\"true\\\">2</mn></msup></mrow></math></script></span>) can ultimately be pushed. Comparing experimental data for different polymers at variable doping levels, we show that the <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span> vs. <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></script></span> curve is universal up to the maximum <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></script></span>, followed by a material-dependent roll-off, when <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span> and <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">σ</mi></mrow></math></script></span> are normalized to their values at maximum <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">P</mi><mi is=\\\"true\\\">F</mi></mrow></math></script></span> and find there is a soft upper limit for <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi></mrow></math></script></span> (∼200 μV/K), where the optimal power factor is achieved. Combining tight-binding and kinetic Monte Carlo modeling, we quantitatively explain this behavior in terms of quasi-free charges moving in a renormalized density of states of Gaussian shape, where the renormalization accounts for the screened interaction with the ionized dopants. Our results imply that the trade-off exists only at the single-material level and leads to practical design rules.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102140\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102140","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A universal soft upper limit to the Seebeck coefficient in organic thermoelectrics
The trade-off between conductivity () and Seebeck coefficient () is an ongoing challenge for organic thermoelectrics as it determines how far the power factor () can ultimately be pushed. Comparing experimental data for different polymers at variable doping levels, we show that the vs. curve is universal up to the maximum , followed by a material-dependent roll-off, when and are normalized to their values at maximum and find there is a soft upper limit for (∼200 μV/K), where the optimal power factor is achieved. Combining tight-binding and kinetic Monte Carlo modeling, we quantitatively explain this behavior in terms of quasi-free charges moving in a renormalized density of states of Gaussian shape, where the renormalization accounts for the screened interaction with the ionized dopants. Our results imply that the trade-off exists only at the single-material level and leads to practical design rules.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.