Rafael León, Ricardo Millán-Becerro, Francisco Macías, Carlos R. Cánovas, Carmen M. Neculita, Carlos Ayora, José Miguel Nieto
{"title":"高污染酸性矿山废水分散碱性基质被动处理技术:20年成功应用","authors":"Rafael León, Ricardo Millán-Becerro, Francisco Macías, Carlos R. Cánovas, Carmen M. Neculita, Carlos Ayora, José Miguel Nieto","doi":"10.1016/j.watres.2025.124683","DOIUrl":null,"url":null,"abstract":"Over the past two decades, Dispersed Alkaline Substrate technology (DAS) has emerged as a highly effective passive approach to treating acid mine drainage with extreme acidity and metal loading. By mixing alkaline materials - such as limestone, magnesia, barium carbonate or industrial by-products - into an inert wood-chip matrix, DAS systems maintain high porosity and neutralization capacity without rapidly clogging. This treatment technology has evolved from laboratory trials to pilot and full-scale field testing, using multi-step systems integrated with Natural Fe-Oxidizing Lagoons (NFOL) for pre-oxidation, which have demonstrated their long-term effectiveness for acidity and metal removal. The sustainability and applicability of the process has been improved by the search for new reagents (e.g. MgO for divalent metals removal, BaCO₃ for sulfate removal, wood ash or calcite-rich waste for cost reduction). Field trials in diverse regions - from the Iberian pyrite belt to South Africa, Canada, South America, Asia, Europe and Oceania - report net acid removal often exceeding 95% and near complete retention of metal(loid)s such as Al, Cu, Zn, Pb and As. Mineralogical analyses indicate that contaminants precipitate primarily as hydroxides, oxyhydroxides, and sulfates (e.g., schwertmannite, basaluminite, barite), allowing targeted valorization of metal-rich sludges. Remaining challenges include assessing long-term reagent life under variable hydrological conditions, extending full-scale use to phosphogypsum and other industrial leachates, and developing strategies for residue stabilization and resource recovery. The aim of this review is to synthesise these developments, assess current performance and identify future research needs for the advancement of passive DAS treatment technology.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"289 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersed Alkaline Substrate passive treatment technology for highly contaminated acid mine drainage: 20 years of successful application\",\"authors\":\"Rafael León, Ricardo Millán-Becerro, Francisco Macías, Carlos R. Cánovas, Carmen M. Neculita, Carlos Ayora, José Miguel Nieto\",\"doi\":\"10.1016/j.watres.2025.124683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past two decades, Dispersed Alkaline Substrate technology (DAS) has emerged as a highly effective passive approach to treating acid mine drainage with extreme acidity and metal loading. By mixing alkaline materials - such as limestone, magnesia, barium carbonate or industrial by-products - into an inert wood-chip matrix, DAS systems maintain high porosity and neutralization capacity without rapidly clogging. This treatment technology has evolved from laboratory trials to pilot and full-scale field testing, using multi-step systems integrated with Natural Fe-Oxidizing Lagoons (NFOL) for pre-oxidation, which have demonstrated their long-term effectiveness for acidity and metal removal. The sustainability and applicability of the process has been improved by the search for new reagents (e.g. MgO for divalent metals removal, BaCO₃ for sulfate removal, wood ash or calcite-rich waste for cost reduction). Field trials in diverse regions - from the Iberian pyrite belt to South Africa, Canada, South America, Asia, Europe and Oceania - report net acid removal often exceeding 95% and near complete retention of metal(loid)s such as Al, Cu, Zn, Pb and As. Mineralogical analyses indicate that contaminants precipitate primarily as hydroxides, oxyhydroxides, and sulfates (e.g., schwertmannite, basaluminite, barite), allowing targeted valorization of metal-rich sludges. Remaining challenges include assessing long-term reagent life under variable hydrological conditions, extending full-scale use to phosphogypsum and other industrial leachates, and developing strategies for residue stabilization and resource recovery. The aim of this review is to synthesise these developments, assess current performance and identify future research needs for the advancement of passive DAS treatment technology.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"289 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2025.124683\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.124683","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Dispersed Alkaline Substrate passive treatment technology for highly contaminated acid mine drainage: 20 years of successful application
Over the past two decades, Dispersed Alkaline Substrate technology (DAS) has emerged as a highly effective passive approach to treating acid mine drainage with extreme acidity and metal loading. By mixing alkaline materials - such as limestone, magnesia, barium carbonate or industrial by-products - into an inert wood-chip matrix, DAS systems maintain high porosity and neutralization capacity without rapidly clogging. This treatment technology has evolved from laboratory trials to pilot and full-scale field testing, using multi-step systems integrated with Natural Fe-Oxidizing Lagoons (NFOL) for pre-oxidation, which have demonstrated their long-term effectiveness for acidity and metal removal. The sustainability and applicability of the process has been improved by the search for new reagents (e.g. MgO for divalent metals removal, BaCO₃ for sulfate removal, wood ash or calcite-rich waste for cost reduction). Field trials in diverse regions - from the Iberian pyrite belt to South Africa, Canada, South America, Asia, Europe and Oceania - report net acid removal often exceeding 95% and near complete retention of metal(loid)s such as Al, Cu, Zn, Pb and As. Mineralogical analyses indicate that contaminants precipitate primarily as hydroxides, oxyhydroxides, and sulfates (e.g., schwertmannite, basaluminite, barite), allowing targeted valorization of metal-rich sludges. Remaining challenges include assessing long-term reagent life under variable hydrological conditions, extending full-scale use to phosphogypsum and other industrial leachates, and developing strategies for residue stabilization and resource recovery. The aim of this review is to synthesise these developments, assess current performance and identify future research needs for the advancement of passive DAS treatment technology.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.