单晶GaN衬底上无位错InGaN纳米级发光二极管像素

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nirmal Anand, , , Sadat Tahmeed Azad, , , Christy Giji Jenson, , , Dipon Kumar Ghosh, , , Md. Zunaid Baten, , , Pei-Cheng Ku, , , Grzegorz Muziol, , and , Sharif Md. Sadaf*, 
{"title":"单晶GaN衬底上无位错InGaN纳米级发光二极管像素","authors":"Nirmal Anand,&nbsp;, ,&nbsp;Sadat Tahmeed Azad,&nbsp;, ,&nbsp;Christy Giji Jenson,&nbsp;, ,&nbsp;Dipon Kumar Ghosh,&nbsp;, ,&nbsp;Md. Zunaid Baten,&nbsp;, ,&nbsp;Pei-Cheng Ku,&nbsp;, ,&nbsp;Grzegorz Muziol,&nbsp;, and ,&nbsp;Sharif Md. Sadaf*,&nbsp;","doi":"10.1021/acsphotonics.5c01349","DOIUrl":null,"url":null,"abstract":"<p >Indium gallium nitride (InGaN) quantum well (QW) micro- and nanoscale light-emitting diodes (LEDs) are promising for next-generation ultrafast optical interconnects and augmented/virtual reality displays. However, scaling to nanoscale dimensions presents significant challenges including enhanced nonradiative surface recombination, defect and/or dislocation-related emission degradation, and nanoscale pixel contact formation. In this work, we demonstrate strain-engineered nanoscale blue LED pixels fabricated via top-down nanostructuring of an all-InGaN quantum well/barrier heterostructure grown by plasma-assisted molecular beam epitaxy (PAMBE) on significantly low dislocation-density single-crystal GaN substrates (in the order of ∼10<sup>5</sup>–10<sup>6</sup> cm<sup>–2</sup>; 2 to 3 orders of magnitude lower than commercial GaN/Sapphire templates). Sidewall passivation using atomic layer deposition (ALD) of Al<sub>2</sub>O<sub>3</sub> enables excellent diode behavior, including a rectification ratio &gt;10<sup>4</sup> between −5 V and +5 V and extremely low reverse leakage (∼0.01 A/cm<sup>2</sup> at −10 V). Monte Carlo analyses suggest almost 100% yield of completely dislocation-free active regions for ∼450 nm nanopixels. Electroluminescence measurements show bright blue emission with a peak external quantum efficiency (EQE) of 0.46% at ∼1.2 kA/cm<sup>2</sup>. Poisson–Schrödinger simulations reveal ∼20% strain relaxation in the QW, effectively mitigating the quantum-confined Stark effect (QCSE). Additionally, finite-difference time-domain (FDTD) simulations confirm that the nanoscale geometry enhances light extraction efficiency by over 40% compared to planar designs, independent of substrate materials. These results establish a scalable pathway for dislocation-free, high-brightness InGaN μLED arrays suitable for advanced display and photonic systems.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 10","pages":"5639–5648"},"PeriodicalIF":6.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dislocation-Free InGaN Nanoscale Light-Emitting Diode Pixels on Single-Crystal GaN Substrates\",\"authors\":\"Nirmal Anand,&nbsp;, ,&nbsp;Sadat Tahmeed Azad,&nbsp;, ,&nbsp;Christy Giji Jenson,&nbsp;, ,&nbsp;Dipon Kumar Ghosh,&nbsp;, ,&nbsp;Md. Zunaid Baten,&nbsp;, ,&nbsp;Pei-Cheng Ku,&nbsp;, ,&nbsp;Grzegorz Muziol,&nbsp;, and ,&nbsp;Sharif Md. Sadaf*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c01349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Indium gallium nitride (InGaN) quantum well (QW) micro- and nanoscale light-emitting diodes (LEDs) are promising for next-generation ultrafast optical interconnects and augmented/virtual reality displays. However, scaling to nanoscale dimensions presents significant challenges including enhanced nonradiative surface recombination, defect and/or dislocation-related emission degradation, and nanoscale pixel contact formation. In this work, we demonstrate strain-engineered nanoscale blue LED pixels fabricated via top-down nanostructuring of an all-InGaN quantum well/barrier heterostructure grown by plasma-assisted molecular beam epitaxy (PAMBE) on significantly low dislocation-density single-crystal GaN substrates (in the order of ∼10<sup>5</sup>–10<sup>6</sup> cm<sup>–2</sup>; 2 to 3 orders of magnitude lower than commercial GaN/Sapphire templates). Sidewall passivation using atomic layer deposition (ALD) of Al<sub>2</sub>O<sub>3</sub> enables excellent diode behavior, including a rectification ratio &gt;10<sup>4</sup> between −5 V and +5 V and extremely low reverse leakage (∼0.01 A/cm<sup>2</sup> at −10 V). Monte Carlo analyses suggest almost 100% yield of completely dislocation-free active regions for ∼450 nm nanopixels. Electroluminescence measurements show bright blue emission with a peak external quantum efficiency (EQE) of 0.46% at ∼1.2 kA/cm<sup>2</sup>. Poisson–Schrödinger simulations reveal ∼20% strain relaxation in the QW, effectively mitigating the quantum-confined Stark effect (QCSE). Additionally, finite-difference time-domain (FDTD) simulations confirm that the nanoscale geometry enhances light extraction efficiency by over 40% compared to planar designs, independent of substrate materials. These results establish a scalable pathway for dislocation-free, high-brightness InGaN μLED arrays suitable for advanced display and photonic systems.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 10\",\"pages\":\"5639–5648\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01349\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01349","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮化铟镓(InGaN)量子阱(QW)微纳米级发光二极管(led)有望用于下一代超快光互连和增强/虚拟现实显示。然而,缩放到纳米尺度提出了重大挑战,包括增强的非辐射表面重组,缺陷和/或位错相关的发射降解,以及纳米尺度像素接触形成。在这项工作中,我们展示了通过等离子体辅助分子束外延(PAMBE)生长的全ingan量子阱/势垒异质结构的自上而下纳米结构制造的应变工程纳米级蓝色LED像素,该结构在明显低位错密度的单晶GaN衬底上(约105-106 cm-2,比商业GaN/蓝宝石模板低2到3个数量级)。使用Al2O3的原子层沉积(ALD)的侧壁钝化可以实现优异的二极管性能,包括在- 5 V和+5 V之间的整流比>;104和极低的反漏(−10 V时为~ 0.01 a /cm2)。蒙特卡罗分析表明,对于~ 450 nm纳米像素,几乎100%的产率完全无位错活性区域。电致发光测量显示,在~ 1.2 kA/cm2下,亮蓝色发射具有0.46%的峰值外量子效率(EQE)。Poisson-Schrödinger模拟显示,量子阱中有20%的应变松弛,有效地减轻了量子受限的斯塔克效应(QCSE)。此外,时域有限差分(FDTD)模拟证实,与平面设计相比,纳米级几何结构的光提取效率提高了40%以上,与衬底材料无关。这些结果建立了适用于先进显示和光子系统的无位错、高亮度InGaN μLED阵列的可扩展路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dislocation-Free InGaN Nanoscale Light-Emitting Diode Pixels on Single-Crystal GaN Substrates

Dislocation-Free InGaN Nanoscale Light-Emitting Diode Pixels on Single-Crystal GaN Substrates

Dislocation-Free InGaN Nanoscale Light-Emitting Diode Pixels on Single-Crystal GaN Substrates

Indium gallium nitride (InGaN) quantum well (QW) micro- and nanoscale light-emitting diodes (LEDs) are promising for next-generation ultrafast optical interconnects and augmented/virtual reality displays. However, scaling to nanoscale dimensions presents significant challenges including enhanced nonradiative surface recombination, defect and/or dislocation-related emission degradation, and nanoscale pixel contact formation. In this work, we demonstrate strain-engineered nanoscale blue LED pixels fabricated via top-down nanostructuring of an all-InGaN quantum well/barrier heterostructure grown by plasma-assisted molecular beam epitaxy (PAMBE) on significantly low dislocation-density single-crystal GaN substrates (in the order of ∼105–106 cm–2; 2 to 3 orders of magnitude lower than commercial GaN/Sapphire templates). Sidewall passivation using atomic layer deposition (ALD) of Al2O3 enables excellent diode behavior, including a rectification ratio >104 between −5 V and +5 V and extremely low reverse leakage (∼0.01 A/cm2 at −10 V). Monte Carlo analyses suggest almost 100% yield of completely dislocation-free active regions for ∼450 nm nanopixels. Electroluminescence measurements show bright blue emission with a peak external quantum efficiency (EQE) of 0.46% at ∼1.2 kA/cm2. Poisson–Schrödinger simulations reveal ∼20% strain relaxation in the QW, effectively mitigating the quantum-confined Stark effect (QCSE). Additionally, finite-difference time-domain (FDTD) simulations confirm that the nanoscale geometry enhances light extraction efficiency by over 40% compared to planar designs, independent of substrate materials. These results establish a scalable pathway for dislocation-free, high-brightness InGaN μLED arrays suitable for advanced display and photonic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信