通过弱耦合双腔具有恒定透射率的光谱可调谐反射率

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cheolhun Kang, , , Seongcheol Ju, , , Incheol Jung, , , Dohyun Kim, , , Donggyu Lim, , , Hui Joon Park*, , , Jaewon Choi*, , and , Kyu-Tae Lee*, 
{"title":"通过弱耦合双腔具有恒定透射率的光谱可调谐反射率","authors":"Cheolhun Kang,&nbsp;, ,&nbsp;Seongcheol Ju,&nbsp;, ,&nbsp;Incheol Jung,&nbsp;, ,&nbsp;Dohyun Kim,&nbsp;, ,&nbsp;Donggyu Lim,&nbsp;, ,&nbsp;Hui Joon Park*,&nbsp;, ,&nbsp;Jaewon Choi*,&nbsp;, and ,&nbsp;Kyu-Tae Lee*,&nbsp;","doi":"10.1021/acsphotonics.5c01767","DOIUrl":null,"url":null,"abstract":"<p >Weakly coupled dual cavities (WCDCs) are demonstrated to enable adjustable reflectance while maintaining invariant transmittance, capabilities that surpass those of conventional thin-film optical coatings. The structure consists of two vertically stacked optical cavities sharing a thin metallic interlayer: the upper cavity comprises a lossy metal, a transparent dielectric, and a reflective metal, while the lower cavity is formed by sandwiching a transparent dielectric between two highly reflective metals. While both cavities influence the reflectance, the transmittance is predominantly governed by the lower cavity. Comprehensive analyses of cavity thicknesses, coupling strength, and interference conditions reveal how spectral reflectance profiles can be tailored without altering the overall transmittance. To the best of our knowledge, this decoupled spectral behavior, tunable reflectance with fixed transmittance, is experimentally demonstrated here for the first time. Experimental demonstrations using three devices with varying upper cavity thicknesses confirm this tunability, showing consistent transmittance and markedly different reflectance spectra. These findings deepen our understanding of optical interference in multilayer structures and highlight the versatility of this design approach for a wide range of applications, including transflective displays, holography, optical isolation, and information encryption.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 10","pages":"5799–5805"},"PeriodicalIF":6.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrally Tunable Reflectance with Invariant Transmittance via Weakly Coupled Dual Cavities\",\"authors\":\"Cheolhun Kang,&nbsp;, ,&nbsp;Seongcheol Ju,&nbsp;, ,&nbsp;Incheol Jung,&nbsp;, ,&nbsp;Dohyun Kim,&nbsp;, ,&nbsp;Donggyu Lim,&nbsp;, ,&nbsp;Hui Joon Park*,&nbsp;, ,&nbsp;Jaewon Choi*,&nbsp;, and ,&nbsp;Kyu-Tae Lee*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c01767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Weakly coupled dual cavities (WCDCs) are demonstrated to enable adjustable reflectance while maintaining invariant transmittance, capabilities that surpass those of conventional thin-film optical coatings. The structure consists of two vertically stacked optical cavities sharing a thin metallic interlayer: the upper cavity comprises a lossy metal, a transparent dielectric, and a reflective metal, while the lower cavity is formed by sandwiching a transparent dielectric between two highly reflective metals. While both cavities influence the reflectance, the transmittance is predominantly governed by the lower cavity. Comprehensive analyses of cavity thicknesses, coupling strength, and interference conditions reveal how spectral reflectance profiles can be tailored without altering the overall transmittance. To the best of our knowledge, this decoupled spectral behavior, tunable reflectance with fixed transmittance, is experimentally demonstrated here for the first time. Experimental demonstrations using three devices with varying upper cavity thicknesses confirm this tunability, showing consistent transmittance and markedly different reflectance spectra. These findings deepen our understanding of optical interference in multilayer structures and highlight the versatility of this design approach for a wide range of applications, including transflective displays, holography, optical isolation, and information encryption.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 10\",\"pages\":\"5799–5805\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01767\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01767","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

弱耦合双腔(WCDCs)被证明能够在保持恒定透射率的同时调节反射率,其能力超过了传统薄膜光学涂层。该结构由两个垂直堆叠的光学腔组成,共享薄金属夹层:上腔由损耗金属、透明电介质和反射金属组成,下腔由透明电介质夹在两个高反射金属之间形成。虽然两个腔都影响反射率,但透过率主要由下腔控制。对空腔厚度、耦合强度和干涉条件的综合分析揭示了如何在不改变整体透射率的情况下定制光谱反射率曲线。据我们所知,这种解耦的光谱行为,具有固定透射率的可调反射率,在这里首次被实验证明。使用不同上腔厚度的三种器件进行的实验证明了这种可调性,显示出一致的透射率和明显不同的反射光谱。这些发现加深了我们对多层结构中光干涉的理解,并突出了这种设计方法在广泛应用中的多功能性,包括透光显示、全息、光学隔离和信息加密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spectrally Tunable Reflectance with Invariant Transmittance via Weakly Coupled Dual Cavities

Spectrally Tunable Reflectance with Invariant Transmittance via Weakly Coupled Dual Cavities

Spectrally Tunable Reflectance with Invariant Transmittance via Weakly Coupled Dual Cavities

Weakly coupled dual cavities (WCDCs) are demonstrated to enable adjustable reflectance while maintaining invariant transmittance, capabilities that surpass those of conventional thin-film optical coatings. The structure consists of two vertically stacked optical cavities sharing a thin metallic interlayer: the upper cavity comprises a lossy metal, a transparent dielectric, and a reflective metal, while the lower cavity is formed by sandwiching a transparent dielectric between two highly reflective metals. While both cavities influence the reflectance, the transmittance is predominantly governed by the lower cavity. Comprehensive analyses of cavity thicknesses, coupling strength, and interference conditions reveal how spectral reflectance profiles can be tailored without altering the overall transmittance. To the best of our knowledge, this decoupled spectral behavior, tunable reflectance with fixed transmittance, is experimentally demonstrated here for the first time. Experimental demonstrations using three devices with varying upper cavity thicknesses confirm this tunability, showing consistent transmittance and markedly different reflectance spectra. These findings deepen our understanding of optical interference in multilayer structures and highlight the versatility of this design approach for a wide range of applications, including transflective displays, holography, optical isolation, and information encryption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信