逆设计电磁环境构造量子比特边缘态

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Miguel-Torcal*, , , T. F. Allard, , , P. A. Huidobro, , , F. J. García-Vidal, , and , A. I. Fernández-Domínguez*, 
{"title":"逆设计电磁环境构造量子比特边缘态","authors":"A. Miguel-Torcal*,&nbsp;, ,&nbsp;T. F. Allard,&nbsp;, ,&nbsp;P. A. Huidobro,&nbsp;, ,&nbsp;F. J. García-Vidal,&nbsp;, and ,&nbsp;A. I. Fernández-Domínguez*,&nbsp;","doi":"10.1021/acsphotonics.5c00986","DOIUrl":null,"url":null,"abstract":"<p >Building on advances in topological photonics and computational optimization, we inverse-design a periodic dielectric structure surrounding a chain of interacting qubits, emulating an extended, dimerized Su–Schrieffer–Heeger excitonic model. Our approach enables precise control over photon-mediated interactions, allowing us to explore the emergence of topological edge states in the qubit chain. By systematically tuning structural parameters to address both coherent evolution and dissipative effects, we demonstrate that edge states remain robust and isolated from the bulk, even in the presence of long-range coupling and disorder, and preserve key topological properties despite deviations from complete chiral symmetry preservation. This work highlights the potential of inverse design in stabilizing topological excitonic states, opening new possibilities for advanced quantum technologies.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 10","pages":"5434–5442"},"PeriodicalIF":6.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphotonics.5c00986","citationCount":"0","resultStr":"{\"title\":\"Constructing Qubit Edge States by Inverse-Designing the Electromagnetic Environment\",\"authors\":\"A. Miguel-Torcal*,&nbsp;, ,&nbsp;T. F. Allard,&nbsp;, ,&nbsp;P. A. Huidobro,&nbsp;, ,&nbsp;F. J. García-Vidal,&nbsp;, and ,&nbsp;A. I. Fernández-Domínguez*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c00986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Building on advances in topological photonics and computational optimization, we inverse-design a periodic dielectric structure surrounding a chain of interacting qubits, emulating an extended, dimerized Su–Schrieffer–Heeger excitonic model. Our approach enables precise control over photon-mediated interactions, allowing us to explore the emergence of topological edge states in the qubit chain. By systematically tuning structural parameters to address both coherent evolution and dissipative effects, we demonstrate that edge states remain robust and isolated from the bulk, even in the presence of long-range coupling and disorder, and preserve key topological properties despite deviations from complete chiral symmetry preservation. This work highlights the potential of inverse design in stabilizing topological excitonic states, opening new possibilities for advanced quantum technologies.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 10\",\"pages\":\"5434–5442\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsphotonics.5c00986\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c00986\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c00986","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于拓扑光子学和计算优化方面的进展,我们反设计了一个围绕相互作用量子比特链的周期性介电结构,模拟了一个扩展的二聚化Su-Schrieffer-Heeger激子模型。我们的方法能够精确控制光子介导的相互作用,使我们能够探索量子比特链中拓扑边缘状态的出现。通过系统地调整结构参数来解决相干演化和耗散效应,我们证明了即使在存在远程耦合和无序的情况下,边缘态仍然保持鲁棒性并与体隔离,并且尽管偏离完全手性对称性保存,但仍然保持关键的拓扑性质。这项工作强调了逆设计在稳定拓扑激子态方面的潜力,为先进的量子技术开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Constructing Qubit Edge States by Inverse-Designing the Electromagnetic Environment

Constructing Qubit Edge States by Inverse-Designing the Electromagnetic Environment

Building on advances in topological photonics and computational optimization, we inverse-design a periodic dielectric structure surrounding a chain of interacting qubits, emulating an extended, dimerized Su–Schrieffer–Heeger excitonic model. Our approach enables precise control over photon-mediated interactions, allowing us to explore the emergence of topological edge states in the qubit chain. By systematically tuning structural parameters to address both coherent evolution and dissipative effects, we demonstrate that edge states remain robust and isolated from the bulk, even in the presence of long-range coupling and disorder, and preserve key topological properties despite deviations from complete chiral symmetry preservation. This work highlights the potential of inverse design in stabilizing topological excitonic states, opening new possibilities for advanced quantum technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信