基于绝缘体上铌酸锂的混合模式/波长复用器

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingyu Zhu, , , Weike Zhao, , , Aoyun Gao, , , Weihan Wang, , , Huang Fei, , , Dajian Liu, , , Daixin Lian, , , Shi Zhao, , , Chun Gao, , , Zejie Yu, , and , Daoxin Dai*, 
{"title":"基于绝缘体上铌酸锂的混合模式/波长复用器","authors":"Mingyu Zhu,&nbsp;, ,&nbsp;Weike Zhao,&nbsp;, ,&nbsp;Aoyun Gao,&nbsp;, ,&nbsp;Weihan Wang,&nbsp;, ,&nbsp;Huang Fei,&nbsp;, ,&nbsp;Dajian Liu,&nbsp;, ,&nbsp;Daixin Lian,&nbsp;, ,&nbsp;Shi Zhao,&nbsp;, ,&nbsp;Chun Gao,&nbsp;, ,&nbsp;Zejie Yu,&nbsp;, and ,&nbsp;Daoxin Dai*,&nbsp;","doi":"10.1021/acsphotonics.5c01285","DOIUrl":null,"url":null,"abstract":"<p >Multiplexing technology is crucial for boosting optical communication systems’ traffic capacity and has seen extensive development in integrated photonics. However, for the emerging lithium niobate on insulator (LNOI) platform, on-chip mode and wavelength manipulation remain challenging─due to the material’s inherent anisotropy and LNOI waveguides’ vertical asymmetry─hampering high-performance multiplexer development and its use in advanced photonic systems. This work presents a highly scalable hybrid mode/wavelength multiplexer for high-capacity on-chip optical communication compatible with dense wavelength division multiplexing (DWDM) systems. Its architecture integrates a 4-channel mode multiplexer and four wavelength division multiplexers. The mode multiplexer is designed along the Z-propagating axis of an x-cut LNOI wafer to minimize mode hybridness, enabling simultaneous multiplexing of TE<sub>0</sub>, TE<sub>1</sub>, TE<sub>2</sub>, and TE<sub>3</sub> modes. The wavelength division multiplexer uses cascaded Fabry–Perot cavity filters along the wafer’s Y-propagating axis. Fabricated devices show excellent performance: a 4-mode × 12-wavelength (3.2 nm spacing) multiplexer has a 3 dB bandwidth of ∼1.3 nm, an extinction ratio of up to 38 dB, an excess loss of ∼0.5 dB, and interchannel crosstalk below −25 dB. A 4-mode × 8-wavelength (1.6 nm spacing) version also achieves an excess loss of ∼0.5 dB and crosstalk below −18 dB. These results highlight multidimensional multiplexing’s value for high-capacity optical interconnections, laying the groundwork for advanced optical communication systems.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 10","pages":"5548–5555"},"PeriodicalIF":6.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Mode/Wavelength Multiplexer Based on Lithium Niobate on Insulator\",\"authors\":\"Mingyu Zhu,&nbsp;, ,&nbsp;Weike Zhao,&nbsp;, ,&nbsp;Aoyun Gao,&nbsp;, ,&nbsp;Weihan Wang,&nbsp;, ,&nbsp;Huang Fei,&nbsp;, ,&nbsp;Dajian Liu,&nbsp;, ,&nbsp;Daixin Lian,&nbsp;, ,&nbsp;Shi Zhao,&nbsp;, ,&nbsp;Chun Gao,&nbsp;, ,&nbsp;Zejie Yu,&nbsp;, and ,&nbsp;Daoxin Dai*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c01285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multiplexing technology is crucial for boosting optical communication systems’ traffic capacity and has seen extensive development in integrated photonics. However, for the emerging lithium niobate on insulator (LNOI) platform, on-chip mode and wavelength manipulation remain challenging─due to the material’s inherent anisotropy and LNOI waveguides’ vertical asymmetry─hampering high-performance multiplexer development and its use in advanced photonic systems. This work presents a highly scalable hybrid mode/wavelength multiplexer for high-capacity on-chip optical communication compatible with dense wavelength division multiplexing (DWDM) systems. Its architecture integrates a 4-channel mode multiplexer and four wavelength division multiplexers. The mode multiplexer is designed along the Z-propagating axis of an x-cut LNOI wafer to minimize mode hybridness, enabling simultaneous multiplexing of TE<sub>0</sub>, TE<sub>1</sub>, TE<sub>2</sub>, and TE<sub>3</sub> modes. The wavelength division multiplexer uses cascaded Fabry–Perot cavity filters along the wafer’s Y-propagating axis. Fabricated devices show excellent performance: a 4-mode × 12-wavelength (3.2 nm spacing) multiplexer has a 3 dB bandwidth of ∼1.3 nm, an extinction ratio of up to 38 dB, an excess loss of ∼0.5 dB, and interchannel crosstalk below −25 dB. A 4-mode × 8-wavelength (1.6 nm spacing) version also achieves an excess loss of ∼0.5 dB and crosstalk below −18 dB. These results highlight multidimensional multiplexing’s value for high-capacity optical interconnections, laying the groundwork for advanced optical communication systems.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 10\",\"pages\":\"5548–5555\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01285\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01285","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多路复用技术是提高光通信系统流量容量的关键技术,在集成光子学领域得到了广泛的发展。然而,对于新兴的绝缘体上铌酸锂(LNOI)平台,由于材料固有的各向异性和LNOI波导的垂直不对称性,片上模式和波长操作仍然具有挑战性──阻碍了高性能多路复用器的开发及其在先进光子系统中的应用。这项工作提出了一种高度可扩展的混合模式/波长复用器,用于与密集波分复用(DWDM)系统兼容的高容量片上光通信。其架构集成了一个4通道模式复用器和四个波分复用器。模式复用器沿着x切割LNOI晶圆的z传播轴设计,以最大限度地减少模式杂化,实现TE0, TE1, TE2和TE3模式的同时复用。波分复用器采用沿晶圆y传播轴级联的法布里-珀罗腔滤波器。制作的器件表现出优异的性能:4模× 12波长(3.2 nm间距)多路复用器具有约1.3 nm的3db带宽,高达38 dB的消光比,约0.5 dB的多余损耗,以及低于- 25 dB的通道间串扰。4模× 8波长(1.6 nm间距)的版本也实现了~ 0.5 dB的额外损耗和低于−18 dB的串扰。这些结果突出了多维复用在大容量光互连中的价值,为先进的光通信系统奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid Mode/Wavelength Multiplexer Based on Lithium Niobate on Insulator

Hybrid Mode/Wavelength Multiplexer Based on Lithium Niobate on Insulator

Hybrid Mode/Wavelength Multiplexer Based on Lithium Niobate on Insulator

Multiplexing technology is crucial for boosting optical communication systems’ traffic capacity and has seen extensive development in integrated photonics. However, for the emerging lithium niobate on insulator (LNOI) platform, on-chip mode and wavelength manipulation remain challenging─due to the material’s inherent anisotropy and LNOI waveguides’ vertical asymmetry─hampering high-performance multiplexer development and its use in advanced photonic systems. This work presents a highly scalable hybrid mode/wavelength multiplexer for high-capacity on-chip optical communication compatible with dense wavelength division multiplexing (DWDM) systems. Its architecture integrates a 4-channel mode multiplexer and four wavelength division multiplexers. The mode multiplexer is designed along the Z-propagating axis of an x-cut LNOI wafer to minimize mode hybridness, enabling simultaneous multiplexing of TE0, TE1, TE2, and TE3 modes. The wavelength division multiplexer uses cascaded Fabry–Perot cavity filters along the wafer’s Y-propagating axis. Fabricated devices show excellent performance: a 4-mode × 12-wavelength (3.2 nm spacing) multiplexer has a 3 dB bandwidth of ∼1.3 nm, an extinction ratio of up to 38 dB, an excess loss of ∼0.5 dB, and interchannel crosstalk below −25 dB. A 4-mode × 8-wavelength (1.6 nm spacing) version also achieves an excess loss of ∼0.5 dB and crosstalk below −18 dB. These results highlight multidimensional multiplexing’s value for high-capacity optical interconnections, laying the groundwork for advanced optical communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信