基于ZSM-5催化剂的正石蜡与烯烃共存的催化热解:实验、动力学和DFT计算

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Dongyang Liu, Yuen Bai, Dongdong Chen, Nan Zhang, Liang Zhao, Jinsen Gao, Chunming Xu
{"title":"基于ZSM-5催化剂的正石蜡与烯烃共存的催化热解:实验、动力学和DFT计算","authors":"Dongyang Liu,&nbsp;Yuen Bai,&nbsp;Dongdong Chen,&nbsp;Nan Zhang,&nbsp;Liang Zhao,&nbsp;Jinsen Gao,&nbsp;Chunming Xu","doi":"10.1016/j.ces.2025.122533","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the co-cracking of n-hexane and 1-hexene, utilizing 1-hexene as an olefinic initiator to improve light olefin yields. Experimental investigations, kinetic analyses, and density functional theory calculations (DFT) were used to systematically explore cracking performance, interactions, and mechanisms for co-feeding. Comparied with single feeding of n-hexane, leading to higher light olefin yields (increased from 35.77 wt% to 58.61 wt%) when the olefin content is 20 wt%. Kinetic analysis revealed a shift from protolytic to hydrogen transfer cracking pathway when 1-hexene content exceeded 13.6 wt%, with the maximum cracking rate (13.12 h<sup>−1</sup>) constant at 20 wt% olefin content. DFT calculations showed a lower energy barrier for hydrogen transfer cracking between n-hexane and 1-hexene, compared to n-hexane cracking alone. Therefore, a co-cracking mechanism was proposed, involving paraffin activation through carbocation intermediates generated by olefin, followed by β-cracking to generated light olefins and carbenium ion regeneration, establishing a framework for paraffin-olefin co-conversion.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"320 ","pages":"Article 122533"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic pyrolysis of n-paraffin coexisting with olefin over ZSM-5 based catalysts: Experiments, kinetics, and DFT calculations\",\"authors\":\"Dongyang Liu,&nbsp;Yuen Bai,&nbsp;Dongdong Chen,&nbsp;Nan Zhang,&nbsp;Liang Zhao,&nbsp;Jinsen Gao,&nbsp;Chunming Xu\",\"doi\":\"10.1016/j.ces.2025.122533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the co-cracking of n-hexane and 1-hexene, utilizing 1-hexene as an olefinic initiator to improve light olefin yields. Experimental investigations, kinetic analyses, and density functional theory calculations (DFT) were used to systematically explore cracking performance, interactions, and mechanisms for co-feeding. Comparied with single feeding of n-hexane, leading to higher light olefin yields (increased from 35.77 wt% to 58.61 wt%) when the olefin content is 20 wt%. Kinetic analysis revealed a shift from protolytic to hydrogen transfer cracking pathway when 1-hexene content exceeded 13.6 wt%, with the maximum cracking rate (13.12 h<sup>−1</sup>) constant at 20 wt% olefin content. DFT calculations showed a lower energy barrier for hydrogen transfer cracking between n-hexane and 1-hexene, compared to n-hexane cracking alone. Therefore, a co-cracking mechanism was proposed, involving paraffin activation through carbocation intermediates generated by olefin, followed by β-cracking to generated light olefins and carbenium ion regeneration, establishing a framework for paraffin-olefin co-conversion.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"320 \",\"pages\":\"Article 122533\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250925013545\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925013545","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了正己烷与1-己烯的共裂化反应,利用1-己烯作为烯烃引发剂提高轻质烯烃收率。实验研究、动力学分析和密度泛函理论计算(DFT)被用于系统地探索共进料的开裂性能、相互作用和机制。与单加料正己烷相比,当烯烃含量为20 wt%时,轻烯烃收率由35.77 wt%提高到58.61 wt%。动力学分析表明,当1-己烯含量超过13.6 wt%时,裂解途径由原裂解转变为氢转移裂解,当烯烃含量达到20 wt%时,最大裂解速率为13.12 h−1。DFT计算表明,与单独的正己烷裂解相比,正己烷和1-己烯之间的氢转移裂解具有较低的能垒。因此,提出了一种共裂化机理,即烯烃生成碳阳离子中间体活化石蜡,β裂解生成轻烯烃,再进行正碳离子再生,建立了石蜡-烯烃共转化的框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalytic pyrolysis of n-paraffin coexisting with olefin over ZSM-5 based catalysts: Experiments, kinetics, and DFT calculations
This study investigates the co-cracking of n-hexane and 1-hexene, utilizing 1-hexene as an olefinic initiator to improve light olefin yields. Experimental investigations, kinetic analyses, and density functional theory calculations (DFT) were used to systematically explore cracking performance, interactions, and mechanisms for co-feeding. Comparied with single feeding of n-hexane, leading to higher light olefin yields (increased from 35.77 wt% to 58.61 wt%) when the olefin content is 20 wt%. Kinetic analysis revealed a shift from protolytic to hydrogen transfer cracking pathway when 1-hexene content exceeded 13.6 wt%, with the maximum cracking rate (13.12 h−1) constant at 20 wt% olefin content. DFT calculations showed a lower energy barrier for hydrogen transfer cracking between n-hexane and 1-hexene, compared to n-hexane cracking alone. Therefore, a co-cracking mechanism was proposed, involving paraffin activation through carbocation intermediates generated by olefin, followed by β-cracking to generated light olefins and carbenium ion regeneration, establishing a framework for paraffin-olefin co-conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信