干扰细胞器膜完整性的光调节装配-拆卸动力学。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sangpil Kim, , , Dohyun Kim, , , Youngji Jo, , , Sehee Son, , , Youjung Sim, , , Haewon Ok, , , Jaeeun Lee, , and , Ja-Hyoung Ryu*, 
{"title":"干扰细胞器膜完整性的光调节装配-拆卸动力学。","authors":"Sangpil Kim,&nbsp;, ,&nbsp;Dohyun Kim,&nbsp;, ,&nbsp;Youngji Jo,&nbsp;, ,&nbsp;Sehee Son,&nbsp;, ,&nbsp;Youjung Sim,&nbsp;, ,&nbsp;Haewon Ok,&nbsp;, ,&nbsp;Jaeeun Lee,&nbsp;, and ,&nbsp;Ja-Hyoung Ryu*,&nbsp;","doi":"10.1021/acs.nanolett.5c04030","DOIUrl":null,"url":null,"abstract":"<p >Assembly–disassembly dynamics driven by fuel-driven out-of-equilibrium processes play a key role in biological function. Here, we present a photoregulated assembly–disassembly dynamic system based on synthetic building blocks composed of an azobenzene moiety and an organelle membrane-targeting unit. Upon localization to the organelle membrane, these photoresponsive monomers self-assemble into supramolecular fibrils that interact multivalently with the membrane. UV irradiation (365 nm) induces <i>trans</i>-to-<i>cis</i> isomerization of the azobenzene units, resulting in a morphological transition from fibrillar to amorphous assemblies with reduced membrane affinity. Subsequent exposure to visible light (450 nm) restores the fibrillar state. This reversible assembly–disassembly process enables dynamic control of the membrane binding strength, ultimately disrupting organelle membrane integrity through cyclic weakening and strengthening of supramolecular interactions. Our findings highlight the potential of light-driven, multivalent self-assembly as a strategy for modulating subcellular structures and regulating cellular fate with high spatial and temporal precision.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 40","pages":"14738–14748"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoregulated Assembly–Disassembly Dynamics of Interfering with Organelle Membrane Integrity\",\"authors\":\"Sangpil Kim,&nbsp;, ,&nbsp;Dohyun Kim,&nbsp;, ,&nbsp;Youngji Jo,&nbsp;, ,&nbsp;Sehee Son,&nbsp;, ,&nbsp;Youjung Sim,&nbsp;, ,&nbsp;Haewon Ok,&nbsp;, ,&nbsp;Jaeeun Lee,&nbsp;, and ,&nbsp;Ja-Hyoung Ryu*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c04030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Assembly–disassembly dynamics driven by fuel-driven out-of-equilibrium processes play a key role in biological function. Here, we present a photoregulated assembly–disassembly dynamic system based on synthetic building blocks composed of an azobenzene moiety and an organelle membrane-targeting unit. Upon localization to the organelle membrane, these photoresponsive monomers self-assemble into supramolecular fibrils that interact multivalently with the membrane. UV irradiation (365 nm) induces <i>trans</i>-to-<i>cis</i> isomerization of the azobenzene units, resulting in a morphological transition from fibrillar to amorphous assemblies with reduced membrane affinity. Subsequent exposure to visible light (450 nm) restores the fibrillar state. This reversible assembly–disassembly process enables dynamic control of the membrane binding strength, ultimately disrupting organelle membrane integrity through cyclic weakening and strengthening of supramolecular interactions. Our findings highlight the potential of light-driven, multivalent self-assembly as a strategy for modulating subcellular structures and regulating cellular fate with high spatial and temporal precision.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 40\",\"pages\":\"14738–14748\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c04030\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c04030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由燃料驱动的非平衡过程驱动的装配-拆卸动力学在生物功能中起着关键作用。在这里,我们提出了一个光调节的组装-拆卸动态系统,该系统基于由偶氮苯片段和细胞器膜靶向单元组成的合成构件。在定位到细胞器膜后,这些光反应单体自组装成与膜多价相互作用的超分子原纤维。紫外线照射(365 nm)诱导偶氮苯单元的反式到顺式异构化,导致从纤维状到无定形的形态转变,降低了膜亲和力。随后暴露在可见光(450纳米)下恢复纤维状态。这种可逆的组装-拆卸过程能够动态控制膜结合强度,最终通过超分子相互作用的循环减弱和加强破坏细胞器膜的完整性。我们的研究结果强调了光驱动、多价自组装作为一种具有高时空精度的调节亚细胞结构和调节细胞命运的策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photoregulated Assembly–Disassembly Dynamics of Interfering with Organelle Membrane Integrity

Photoregulated Assembly–Disassembly Dynamics of Interfering with Organelle Membrane Integrity

Assembly–disassembly dynamics driven by fuel-driven out-of-equilibrium processes play a key role in biological function. Here, we present a photoregulated assembly–disassembly dynamic system based on synthetic building blocks composed of an azobenzene moiety and an organelle membrane-targeting unit. Upon localization to the organelle membrane, these photoresponsive monomers self-assemble into supramolecular fibrils that interact multivalently with the membrane. UV irradiation (365 nm) induces trans-to-cis isomerization of the azobenzene units, resulting in a morphological transition from fibrillar to amorphous assemblies with reduced membrane affinity. Subsequent exposure to visible light (450 nm) restores the fibrillar state. This reversible assembly–disassembly process enables dynamic control of the membrane binding strength, ultimately disrupting organelle membrane integrity through cyclic weakening and strengthening of supramolecular interactions. Our findings highlight the potential of light-driven, multivalent self-assembly as a strategy for modulating subcellular structures and regulating cellular fate with high spatial and temporal precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信