{"title":"Panduratin A不受mTOR抑制,通过AMPK激活诱导自噬,抑制宿主巨噬细胞中的结核分枝杆菌","authors":"Thomanai Lamtha,Olabisi Flora Davies-Bolorunduro,Sureeporn Phlaetita,Chernkhwan Kaofai,Phongthon Kanjanasirirat,Tanawadee Khumpanied,Napason Chabang,Bamroong Munyoo,Patoomratana Tuchinda,Suparerk Borwornpinyo,Supawan Jamnongsong,Somponnat Sampattavanich,Prasit Palittapongarnpim,Marisa Ponpuak","doi":"10.1111/mmi.70025","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health burden, especially with the increasing prevalence of drug-resistant strains. There is an urgent need for new therapeutics that act via alternative mechanisms. Autophagy, a vital cell-autonomous defense process, allows macrophages to degrade intracellular pathogens such as Mtb and has gained attention as a potential target for host-directed therapy. In this study, we conducted a high-content imaging screen of herb-derived compounds to identify autophagy inducers in RAW264.7 macrophages. Panduratin A (NPA), a natural compound from Boesenbergia rotunda, was found to potently induce autophagy. NPA promoted autophagic vacuole formation in a dose-dependent fashion at low micromolar levels. Its autophagy-inducing effect was validated using RFP-GFP-LC3 dual fluorescence assays and immunoblotting in the presence of bafilomycin A1. Further mechanistic analysis revealed that NPA activates autophagy through AMPK activation, independent of mTOR inhibition. Importantly, NPA significantly promoted intracellular Mtb clearance and increased colocalization of Mtb with autophagosomes and lysosomes, in a manner dependent on Beclin-1. These findings highlight NPA as a potent enhancer of macrophage antimicrobial responses via autophagy, supporting its potential as a candidate for host-directed adjunctive therapy against TB.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Panduratin A Induces Autophagy Through AMPK Activation Independent of mTOR Inhibition and Restricts Mycobacterium tuberculosis in Host Macrophages.\",\"authors\":\"Thomanai Lamtha,Olabisi Flora Davies-Bolorunduro,Sureeporn Phlaetita,Chernkhwan Kaofai,Phongthon Kanjanasirirat,Tanawadee Khumpanied,Napason Chabang,Bamroong Munyoo,Patoomratana Tuchinda,Suparerk Borwornpinyo,Supawan Jamnongsong,Somponnat Sampattavanich,Prasit Palittapongarnpim,Marisa Ponpuak\",\"doi\":\"10.1111/mmi.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health burden, especially with the increasing prevalence of drug-resistant strains. There is an urgent need for new therapeutics that act via alternative mechanisms. Autophagy, a vital cell-autonomous defense process, allows macrophages to degrade intracellular pathogens such as Mtb and has gained attention as a potential target for host-directed therapy. In this study, we conducted a high-content imaging screen of herb-derived compounds to identify autophagy inducers in RAW264.7 macrophages. Panduratin A (NPA), a natural compound from Boesenbergia rotunda, was found to potently induce autophagy. NPA promoted autophagic vacuole formation in a dose-dependent fashion at low micromolar levels. Its autophagy-inducing effect was validated using RFP-GFP-LC3 dual fluorescence assays and immunoblotting in the presence of bafilomycin A1. Further mechanistic analysis revealed that NPA activates autophagy through AMPK activation, independent of mTOR inhibition. Importantly, NPA significantly promoted intracellular Mtb clearance and increased colocalization of Mtb with autophagosomes and lysosomes, in a manner dependent on Beclin-1. These findings highlight NPA as a potent enhancer of macrophage antimicrobial responses via autophagy, supporting its potential as a candidate for host-directed adjunctive therapy against TB.\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.70025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.70025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Panduratin A Induces Autophagy Through AMPK Activation Independent of mTOR Inhibition and Restricts Mycobacterium tuberculosis in Host Macrophages.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health burden, especially with the increasing prevalence of drug-resistant strains. There is an urgent need for new therapeutics that act via alternative mechanisms. Autophagy, a vital cell-autonomous defense process, allows macrophages to degrade intracellular pathogens such as Mtb and has gained attention as a potential target for host-directed therapy. In this study, we conducted a high-content imaging screen of herb-derived compounds to identify autophagy inducers in RAW264.7 macrophages. Panduratin A (NPA), a natural compound from Boesenbergia rotunda, was found to potently induce autophagy. NPA promoted autophagic vacuole formation in a dose-dependent fashion at low micromolar levels. Its autophagy-inducing effect was validated using RFP-GFP-LC3 dual fluorescence assays and immunoblotting in the presence of bafilomycin A1. Further mechanistic analysis revealed that NPA activates autophagy through AMPK activation, independent of mTOR inhibition. Importantly, NPA significantly promoted intracellular Mtb clearance and increased colocalization of Mtb with autophagosomes and lysosomes, in a manner dependent on Beclin-1. These findings highlight NPA as a potent enhancer of macrophage antimicrobial responses via autophagy, supporting its potential as a candidate for host-directed adjunctive therapy against TB.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.