Eunyoung Jung,Myung-Jin Kim,Orlando D Schärer,Yonghwan Kim
{"title":"RNF4和USP7在PML核体内协调SLX4稳定性的空间调控。","authors":"Eunyoung Jung,Myung-Jin Kim,Orlando D Schärer,Yonghwan Kim","doi":"10.1093/nar/gkaf941","DOIUrl":null,"url":null,"abstract":"To protect the genome from the formation of DNA breaks by nucleases involved in DNA repair, cells have evolved multiple levels of regulatory strategies. One key regulator of nuclease activity is the scaffold protein SLX4, which plays important roles in repairing DNA damage induced by mitomycin C (MMC) and camptothecin (CPT) as well as in the resolution of stalled replication forks. Since SLX4 regulates the activity of nucleases such as SLX1, MUS81, and XPF, whose uncontrolled activity could jeopardize genome integrity, the protein level and localization of SLX4 must be tightly regulated. Here, we show that the ubiquitin E3 ligase RNF4 is associated with SLX4 and is responsible for the ubiquitin-dependent proteasomal degradation of excessive SLX4 under normal conditions. Conversely, promyelocytic leukemia nuclear bodies (PML NBs) promote SLX4 stability. In PML NBs, the stability of SLX4 is maintained by the deubiquitinase USP7, managing the amount of SLX4 necessary for a rapid response to DNA damage. These findings suggest that SLX4 and its associate nucleases are confined within PML NBs and that the optimal protein level of SLX4 is maintained by the coordinated activities of RNF4 and USP7. Our findings provide insight into how cells effectively control the potentially harmful activities of nucleases in the absence of DNA damage by a spatial regulatory mechanism.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"51 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNF4 and USP7 coordinate spatial regulation of SLX4 stability within the PML nuclear bodies.\",\"authors\":\"Eunyoung Jung,Myung-Jin Kim,Orlando D Schärer,Yonghwan Kim\",\"doi\":\"10.1093/nar/gkaf941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To protect the genome from the formation of DNA breaks by nucleases involved in DNA repair, cells have evolved multiple levels of regulatory strategies. One key regulator of nuclease activity is the scaffold protein SLX4, which plays important roles in repairing DNA damage induced by mitomycin C (MMC) and camptothecin (CPT) as well as in the resolution of stalled replication forks. Since SLX4 regulates the activity of nucleases such as SLX1, MUS81, and XPF, whose uncontrolled activity could jeopardize genome integrity, the protein level and localization of SLX4 must be tightly regulated. Here, we show that the ubiquitin E3 ligase RNF4 is associated with SLX4 and is responsible for the ubiquitin-dependent proteasomal degradation of excessive SLX4 under normal conditions. Conversely, promyelocytic leukemia nuclear bodies (PML NBs) promote SLX4 stability. In PML NBs, the stability of SLX4 is maintained by the deubiquitinase USP7, managing the amount of SLX4 necessary for a rapid response to DNA damage. These findings suggest that SLX4 and its associate nucleases are confined within PML NBs and that the optimal protein level of SLX4 is maintained by the coordinated activities of RNF4 and USP7. Our findings provide insight into how cells effectively control the potentially harmful activities of nucleases in the absence of DNA damage by a spatial regulatory mechanism.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf941\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf941","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RNF4 and USP7 coordinate spatial regulation of SLX4 stability within the PML nuclear bodies.
To protect the genome from the formation of DNA breaks by nucleases involved in DNA repair, cells have evolved multiple levels of regulatory strategies. One key regulator of nuclease activity is the scaffold protein SLX4, which plays important roles in repairing DNA damage induced by mitomycin C (MMC) and camptothecin (CPT) as well as in the resolution of stalled replication forks. Since SLX4 regulates the activity of nucleases such as SLX1, MUS81, and XPF, whose uncontrolled activity could jeopardize genome integrity, the protein level and localization of SLX4 must be tightly regulated. Here, we show that the ubiquitin E3 ligase RNF4 is associated with SLX4 and is responsible for the ubiquitin-dependent proteasomal degradation of excessive SLX4 under normal conditions. Conversely, promyelocytic leukemia nuclear bodies (PML NBs) promote SLX4 stability. In PML NBs, the stability of SLX4 is maintained by the deubiquitinase USP7, managing the amount of SLX4 necessary for a rapid response to DNA damage. These findings suggest that SLX4 and its associate nucleases are confined within PML NBs and that the optimal protein level of SLX4 is maintained by the coordinated activities of RNF4 and USP7. Our findings provide insight into how cells effectively control the potentially harmful activities of nucleases in the absence of DNA damage by a spatial regulatory mechanism.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.