构建具有紧凑空间结构的异过渡金属配体场簇以维持钠离子的畅通迁移。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-25 DOI:10.1021/acsnano.5c11413
Hanlin Wang,Jiajia An,Wenxi Zhao,Binkai Yu,Ye Li,Jinqiao Hu,Shikang Jiang,Qinfen Gu,Junwu Zhu,He Zhu,Jingwen Sun,Limin Zhou,Shengjie Peng,Yuping Wu,Hui Xia,Mingzhe Chen
{"title":"构建具有紧凑空间结构的异过渡金属配体场簇以维持钠离子的畅通迁移。","authors":"Hanlin Wang,Jiajia An,Wenxi Zhao,Binkai Yu,Ye Li,Jinqiao Hu,Shikang Jiang,Qinfen Gu,Junwu Zhu,He Zhu,Jingwen Sun,Limin Zhou,Shengjie Peng,Yuping Wu,Hui Xia,Mingzhe Chen","doi":"10.1021/acsnano.5c11413","DOIUrl":null,"url":null,"abstract":"Revealing the mechanism of Mn doping in polyanionic NaFePO4 materials advances our fundamental understanding of electrochemical reactions. Herein, we propose the concept of heterotransition metal ligand field clusters (H-TMLFC) as a framework to investigate the structural evolution of transition metal (TM) ligand fields at the microscopic level. The introduced [MnO6] octahedra exhibit a distinctive half-filled frontier orbital configuration, thereby strengthening σ-bonding interactions and modulating the charge distribution between adjacent [FeO6] units. The redistribution of charge density around the edge-sharing oxygen atoms in [FeO6]-[MnO6] pairs enhances Fe-O covalency and mitigates Fe/Na antisite defects. As a result, H-TMLFC-derived NaFe0.95Mn0.05PO4 achieves an exceptional capacity of 148.9 mAh·g-1 (96.7% of the theoretical capacity) and exhibits superior long-term cycling stability. This work introduces a novel approach for designing high-performance sodium-ion batteries through TM doping, offering atomic-scale insights into the optimization of polyanionic cathode materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"1 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing Heterotransition Metal Ligand Field Clusters with a Compact Spatial Structure for Maintaining Unimpeded Sodium-Ion Migration.\",\"authors\":\"Hanlin Wang,Jiajia An,Wenxi Zhao,Binkai Yu,Ye Li,Jinqiao Hu,Shikang Jiang,Qinfen Gu,Junwu Zhu,He Zhu,Jingwen Sun,Limin Zhou,Shengjie Peng,Yuping Wu,Hui Xia,Mingzhe Chen\",\"doi\":\"10.1021/acsnano.5c11413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Revealing the mechanism of Mn doping in polyanionic NaFePO4 materials advances our fundamental understanding of electrochemical reactions. Herein, we propose the concept of heterotransition metal ligand field clusters (H-TMLFC) as a framework to investigate the structural evolution of transition metal (TM) ligand fields at the microscopic level. The introduced [MnO6] octahedra exhibit a distinctive half-filled frontier orbital configuration, thereby strengthening σ-bonding interactions and modulating the charge distribution between adjacent [FeO6] units. The redistribution of charge density around the edge-sharing oxygen atoms in [FeO6]-[MnO6] pairs enhances Fe-O covalency and mitigates Fe/Na antisite defects. As a result, H-TMLFC-derived NaFe0.95Mn0.05PO4 achieves an exceptional capacity of 148.9 mAh·g-1 (96.7% of the theoretical capacity) and exhibits superior long-term cycling stability. This work introduces a novel approach for designing high-performance sodium-ion batteries through TM doping, offering atomic-scale insights into the optimization of polyanionic cathode materials.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c11413\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c11413","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

揭示锰在聚阴离子NaFePO4材料中掺杂的机理有助于我们对电化学反应的基本认识。在此,我们提出了异质过渡金属配体场簇(H-TMLFC)的概念,作为在微观水平上研究过渡金属配体场结构演变的框架。引入的[MnO6]八面体呈现出独特的半填充前沿轨道构型,从而增强了σ键相互作用,并调节了相邻[FeO6]单元之间的电荷分布。[FeO6]-[MnO6]对中沿共享氧原子周围电荷密度的重新分布增强了Fe- o共价,减轻了Fe/Na对位缺陷。结果表明,h - tmlfc衍生的NaFe0.95Mn0.05PO4的容量达到148.9 mAh·g-1(理论容量的96.7%),并具有良好的长期循环稳定性。这项工作介绍了一种通过TM掺杂设计高性能钠离子电池的新方法,为聚阴离子阴极材料的优化提供了原子尺度的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing Heterotransition Metal Ligand Field Clusters with a Compact Spatial Structure for Maintaining Unimpeded Sodium-Ion Migration.
Revealing the mechanism of Mn doping in polyanionic NaFePO4 materials advances our fundamental understanding of electrochemical reactions. Herein, we propose the concept of heterotransition metal ligand field clusters (H-TMLFC) as a framework to investigate the structural evolution of transition metal (TM) ligand fields at the microscopic level. The introduced [MnO6] octahedra exhibit a distinctive half-filled frontier orbital configuration, thereby strengthening σ-bonding interactions and modulating the charge distribution between adjacent [FeO6] units. The redistribution of charge density around the edge-sharing oxygen atoms in [FeO6]-[MnO6] pairs enhances Fe-O covalency and mitigates Fe/Na antisite defects. As a result, H-TMLFC-derived NaFe0.95Mn0.05PO4 achieves an exceptional capacity of 148.9 mAh·g-1 (96.7% of the theoretical capacity) and exhibits superior long-term cycling stability. This work introduces a novel approach for designing high-performance sodium-ion batteries through TM doping, offering atomic-scale insights into the optimization of polyanionic cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信