高能量密度固态锂硫电池:正极材料的挑战与进展。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-25 DOI:10.1021/acsnano.5c10108
Yuanrui Li, , , Yingjing Yan, , , Kaier Shen, , , Mengxue He, , , Yuantonghe Li, , , Huimin Song, , , Chenxi Zheng, , , Weize Shi, , , Fei Ye, , , Kenneth Ikechukwu Ozoemena, , , Mohammadhosein Safari, , and , Quanquan Pang*, 
{"title":"高能量密度固态锂硫电池:正极材料的挑战与进展。","authors":"Yuanrui Li,&nbsp;, ,&nbsp;Yingjing Yan,&nbsp;, ,&nbsp;Kaier Shen,&nbsp;, ,&nbsp;Mengxue He,&nbsp;, ,&nbsp;Yuantonghe Li,&nbsp;, ,&nbsp;Huimin Song,&nbsp;, ,&nbsp;Chenxi Zheng,&nbsp;, ,&nbsp;Weize Shi,&nbsp;, ,&nbsp;Fei Ye,&nbsp;, ,&nbsp;Kenneth Ikechukwu Ozoemena,&nbsp;, ,&nbsp;Mohammadhosein Safari,&nbsp;, and ,&nbsp;Quanquan Pang*,&nbsp;","doi":"10.1021/acsnano.5c10108","DOIUrl":null,"url":null,"abstract":"<p >All-solid-state lithium–sulfur batteries (ASSLSBs), as an energy storage system for achieving the high energy density target of 600 Wh kg<sup>–1</sup>, hold significant importance in driving in next-generation battery technologies. This review focuses on the key challenges of cathode materials for high energy density ASSLSBs and systematically summarizes the recent research progress. First, the interfacial reaction mechanisms among active materials, conductive agents, and solid electrolytes in sulfur cathodes are analyzed in depth, revealing the fundamental causes of interface failure. Second, the advancements in composite cathodes are summarized, including the influence of preparation processes, material design strategies, and the structure-performance regulation mechanisms of mixed conductors. Next, the role of interface engineering strategies in enhancing reaction kinetics is discussed in detail. Furthermore, recently developed solutions for critical technical bottlenecks, such as high sulfur loading and low-temperature adaptability, are reviewed. Finally, future research directions are envisioned from the dimensions of multiscale interface engineering, material systems, and characterization techniques. This review aims to move beyond conventional single-component optimization approaches, developing a multicomponent framework for cathode design. The review further provides references for developing high-energy-density, long-cycle-life ASSLSBs, offering a comprehensive reference for advancing the practical application of this energy storage technology.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 39","pages":"34469–34491"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Energy Density Solid-State Lithium–Sulfur Batteries: Challenges and Advances in Cathode Materials\",\"authors\":\"Yuanrui Li,&nbsp;, ,&nbsp;Yingjing Yan,&nbsp;, ,&nbsp;Kaier Shen,&nbsp;, ,&nbsp;Mengxue He,&nbsp;, ,&nbsp;Yuantonghe Li,&nbsp;, ,&nbsp;Huimin Song,&nbsp;, ,&nbsp;Chenxi Zheng,&nbsp;, ,&nbsp;Weize Shi,&nbsp;, ,&nbsp;Fei Ye,&nbsp;, ,&nbsp;Kenneth Ikechukwu Ozoemena,&nbsp;, ,&nbsp;Mohammadhosein Safari,&nbsp;, and ,&nbsp;Quanquan Pang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c10108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >All-solid-state lithium–sulfur batteries (ASSLSBs), as an energy storage system for achieving the high energy density target of 600 Wh kg<sup>–1</sup>, hold significant importance in driving in next-generation battery technologies. This review focuses on the key challenges of cathode materials for high energy density ASSLSBs and systematically summarizes the recent research progress. First, the interfacial reaction mechanisms among active materials, conductive agents, and solid electrolytes in sulfur cathodes are analyzed in depth, revealing the fundamental causes of interface failure. Second, the advancements in composite cathodes are summarized, including the influence of preparation processes, material design strategies, and the structure-performance regulation mechanisms of mixed conductors. Next, the role of interface engineering strategies in enhancing reaction kinetics is discussed in detail. Furthermore, recently developed solutions for critical technical bottlenecks, such as high sulfur loading and low-temperature adaptability, are reviewed. Finally, future research directions are envisioned from the dimensions of multiscale interface engineering, material systems, and characterization techniques. This review aims to move beyond conventional single-component optimization approaches, developing a multicomponent framework for cathode design. The review further provides references for developing high-energy-density, long-cycle-life ASSLSBs, offering a comprehensive reference for advancing the practical application of this energy storage technology.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 39\",\"pages\":\"34469–34491\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c10108\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c10108","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全固态锂硫电池(ASSLSBs)作为实现600 Wh kg-1高能量密度目标的储能系统,在推动下一代电池技术的发展中具有重要意义。本文综述了高能量密度asslbs正极材料面临的主要挑战,系统总结了近年来的研究进展。首先,深入分析了硫阴极中活性物质、导电剂和固体电解质之间的界面反应机理,揭示了界面失效的根本原因。其次,综述了复合阴极的研究进展,包括制备工艺的影响、材料设计策略以及混合导体的结构-性能调节机制。其次,详细讨论了界面工程策略在提高反应动力学中的作用。此外,综述了近年来针对高硫负荷和低温适应性等关键技术瓶颈的解决方案。最后,从多尺度界面工程、材料系统、表征技术等方面展望了未来的研究方向。这篇综述的目的是超越传统的单组分优化方法,开发一个多组分阴极设计框架。进一步为开发高能量密度、长循环寿命的asslsb提供参考,为推进该储能技术的实际应用提供全面参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High Energy Density Solid-State Lithium–Sulfur Batteries: Challenges and Advances in Cathode Materials

High Energy Density Solid-State Lithium–Sulfur Batteries: Challenges and Advances in Cathode Materials

All-solid-state lithium–sulfur batteries (ASSLSBs), as an energy storage system for achieving the high energy density target of 600 Wh kg–1, hold significant importance in driving in next-generation battery technologies. This review focuses on the key challenges of cathode materials for high energy density ASSLSBs and systematically summarizes the recent research progress. First, the interfacial reaction mechanisms among active materials, conductive agents, and solid electrolytes in sulfur cathodes are analyzed in depth, revealing the fundamental causes of interface failure. Second, the advancements in composite cathodes are summarized, including the influence of preparation processes, material design strategies, and the structure-performance regulation mechanisms of mixed conductors. Next, the role of interface engineering strategies in enhancing reaction kinetics is discussed in detail. Furthermore, recently developed solutions for critical technical bottlenecks, such as high sulfur loading and low-temperature adaptability, are reviewed. Finally, future research directions are envisioned from the dimensions of multiscale interface engineering, material systems, and characterization techniques. This review aims to move beyond conventional single-component optimization approaches, developing a multicomponent framework for cathode design. The review further provides references for developing high-energy-density, long-cycle-life ASSLSBs, offering a comprehensive reference for advancing the practical application of this energy storage technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信